570 research outputs found

    Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    Get PDF
    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations

    Deep-sea sediment records of the Laschamp geomagnetic field excursion (∼41,000 calendar years before present)

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B04101, doi:10.1029/2003JB002943.We have recovered two new high-resolution paleomagnetic records of the Laschamp Excursion (∼41,000 calendar years B.P.) from deep-sea sediments of the western North Atlantic Ocean. The records document that the Laschamp Excursion was characterized locally by (1) declination changes of ±120°, (2) inclination changes of more than 140°, (3) ∼1200-year oscillations in both inclination and declination, (4) near 90° out-of-phase relationships between inclinations and declinations that produced two clockwise loops in directions and virtual geomagnetic poles (VGPs) followed by a counterclockwise loop, (5) excursional VGPs during both intervals of clockwise looping, (6) magnetic field intensities less than 10% of normal that persisted for almost 2000 years, (7) marked similarity in excursional directions over ∼5000 km spatial scale length, and (8) secular variation rates comparable to historic field behavior but persisting in sign for hundreds of years. All of these features, with the exception of anomalously large directional amplitude, are consistent with normal magnetic field secular variation. Comparison of our Laschamp Excursion paleomagnetic records with other late Quaternary excursion records suggests that there is a group of excursions, which we term class I, which have strikingly similar patterns of field behavior and likely share a common cause as part of the overall core dynamo process. Three general models of secular variation are described that can qualitatively produce class I excursions. On the basis of these observations we conclude that class I excursions, epitomized by the Laschamp Excursion, are more closely related to normal secular variation and are not necessarily a prelude to magnetic field reversal

    Frisbee – A Platform for a Small Satellite Science Swarms

    Get PDF
    The FRISBEE multi-mission platform is presented, alongside the mission concept for SWARM (Space Weather Advanced Research Mission), a fleet of 30 or more microsatellites launched in groups of 5 and covering a range of local times and inclinations. The aim of this mission is to develop an understanding of the dynamic, global, and multiscale solar terrestrial interactions. The scientific payload is restricted to a dc magnetometer and electrostatic charged particle (ion and electron) analyser, providing both high time resolution and characterisation of collisionless plasma processes. The baseline satellite swarm can be launched in a variety of configurations and be augmented by future launches of identical satellites to provide greater coverage and density of measurement. The satellites require only loose formation control to ensure equal separation throughout the set of orbits defined in this document. The individual satellites are spin stabilized and each have a mass \u3c 25 kg. This mission represents the next step in understanding the solar terrestrial interaction and the potential results will be of great interest to the space science community at large. This mission has a true requirement for a swarm such that it can sample the magnetosphere in three dimensions and with sufficient density of measurements. The spacecraft required for this proposed mission could be designed and built within 24 months as most of the platform and payload technologies are re-used from previous missions. The mission has the potential for international collaboration, with provision of spacecraft platforms and world-leading scientific research. A demonstration of this mission has been down-selected by the Particle Physics and Astronomy Research Council (PPARC) for potential funding in the UK National MOSAIC small satellite programme

    A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    Get PDF
    BackgroundThe cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation.ResultsThe optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts).ConclusionAlignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds

    A Case–Control Analysis of Exposure to Traffic and Acute Myocardial Infarction

    Get PDF
    BACKGROUND: Long-term exposure to particulate air pollution has been associated with an increased risk of dying from cardiopulmonary and ischemic heart disease, yet few studies have evaluated cardiovascular end points other than mortality. We investigated the relationship between long-term exposure to traffic and occurrence of acute myocardial infarction (AMI) in a case–control study. METHODS: A total of 5,049 confirmed cases of AMI were identified between 1995 and 2003 as part of the Worcester Heart Attack Study, a community-wide study examining changes over time in the incidence of AMI among greater Worcester, Massachusetts, residents. Population controls were selected from Massachusetts resident lists. We used cumulative traffic within 100 m of subjects’ residence and distance from major roadway as proxies for exposure to traffic-related air pollution. We estimated the relationship between exposure to traffic and occurrence of AMI using logistic regression, and we adjusted for the following potential confounders: age, sex, section of the study area, point sources emissions of particulate matter with aerodynamic diameter < 2.5 μm, area socioeconomic characteristics, and percentage of open space. RESULTS: An increase in cumulative traffic near the home was associated with a 4% increase in the odds of AMI per interquartile range [95% confidence interval (CI), 2–7%], whereas living near a major roadway was associated with a 5% increase in the odds of AMI per kilometer (95% CI, 3–6%). CONCLUSIONS: hese results provide support for an association between long-term exposure to traffic and the risk of AMI

    Shuttle Entry Imaging Using Infrared Thermography

    Get PDF
    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented

    Tree Bark as a Bioindicator of Atmospheric Contamination by Heavy Metals according to Vehicular Traffic Intensity in El Tambo, Huancayo, Peru

    Get PDF
    Tree bark is a good atmospheric heavy metals contamination bioindicator. This study aims to determine heavy metals in tree bark in El Tambo, Huancayo, Peru. Salix babylonica, Populus nigra, Senna multiglandulosa, and Schinus molle bark samples were taken in 2021 and analyzed through Inductively Coupled Plasma Optical Emission Spectroscopy. Results show heavy metals concentrations (mg.kg-1) of Zn (195.92 ± 125.97) > Pb (24.45 ± 15.57) > Cu (23.39 ± 11.01) > Cr (2.43 ± 1.13) > Cd (1.77 ± 3.06) > Ni (1.01 ± 0.70). The highest contamination levels were by Zn, Pb, and Cu, and the lowest by Cr, Cd, and Ni. The average concentration due to vehicular traffic intensity was Zn > Cu > Pb > Cr > Cd > Ni. Cr reveals higher concentration at high traffic levels; Cu, Ni, Pb, and Zn at moderate, and Cd at low levels. Schinus molle showed the highest concentration of Ni, Populus nigra of Cr, and Salix babylonica of Zn and Cd. The lowest concentrations of all metals were found in Senna multiglandulosa. This and Salix babylonica are bioindicators of Pb, Cr, Cd, Cu, Ni, and Zn, the first report for the world on bark in Fabaceae and Salicaceae species
    corecore