157 research outputs found

    Adipose Stem Cells (ASCs) and Stromal Vascular Fraction (SVF) as a Potential Therapy in Combating (COVID-19)-Disease

    Get PDF
    A recent and interesting study reported improved respiratory activity after intravenous administration of mesenchymal stem cells (MSCs) into patients affected by coronavirus disease 2019 (COVID-19). These outcomes displayed that intravenous infiltration of MSCs is a safe and efficacy treatment for COVID-19 pneumonia, a severe acute respiratory illness caused by the coronavirus 2 (SARS-CoV-2). Only 7 patients were treated, but with extraordinary results, opening a new strategy in COVID-19 therapy. Currently, no specific therapies against SARS-CoV-2 are available. The MSCs therapy outcomes reported, are striking, as these cells inhibit the over-activation of the immune system, promoting endogenous repair, by improving the lung microenvironment after the SARS-CoV-2 infection. The MSCs could represent an effective, autologous and safe therapy, and therefore, sharing these published results, here is reported the potential use possibilities in COVID-19 of the most common MSCs represented by Adipose Stem Cells (ASCs)

    Systematic review: Advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment

    Get PDF
    Fat tissue (FT) has been used for many years in regenerative surgery as a bioactive material through the lipofilling/fat graft (F-GRF)-nano-fat technique, as a bioactive scaffold when it was enriched with adipose-derived mesenchymal stem cells (AD-MSCs) contained in the stromal vascular fraction (SVF), and as a direct source of AD-MSCs used in wound healing (WH) and scar treatment (ST). This systematic review aims to describe the advances in FT engineering applied to regenerative surgery (from bench to clinic), through the use of AD-MSCs, SVF contained in F-GRF in WH and ST. The work has been performed by assessing in the selected studies autologous graft of AD-MSCs, SVF, and F-GRF compared to any control for ST and WH. The protocol was developed following the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, SVF, and F-GRF use in WH and ST in which FT was used as bioactive material-scaffold and source of AD-MSCs. Of the 714 articles initially identified, 453 articles focusing on regenerative strategies in WH and ST were selected and, consequently, only 84 articles that apparently related to AD-MSC, SVF, and F-GRF were analyzed. Of these, 61 articles identified as pre-clinical, experimental, and in vitro, and 5 articles identified as a comment and systematic review were excluded. Only 18 original articles which strictly and exclusively focused on autologous AD-MSCs, SVF, and F-GRF in ST and WH were analyzed. The included studies had to match predetermined criteria according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach. The identified studies described microscopic and clinical outcomes in patients treated with AD-MSCs, SVF, and F-GRF. Collected data confirmed the safety and efficacy of FT both as bioactive material-scaffold and source of AD-MSCs in WH and ST without major side effects

    Research progress on Mesenchymal Stem Cells (MSCs), Adipose-Derived Mesenchymal Stem Cells (AD-MSCs), Drugs, and Vaccines in Inhibiting COVID-19 Disease

    Get PDF
    Mesenchymal Stem Cells (MSCs), and Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) have been used for many years in regenerative medicine for clinical and surgical applications. Additionally, recent studies reported improved respiratory activity after intravenous administration of MSCs into patients affected by coronavirus disease 2019 (COVID-19) caused by the Coronavirus 2 (SARS-CoV-2) suggesting their role as anti-viral therapy. Severe COVID-19 patients usually progress to acute respiratory distress syndrome, sepsis, metabolic acidosis that is difficult to correct, coagulation dysfunction, multiple organ failure, and even death in a short period after onset. Currently, there is still a lack of clinically effective drugs for such patients. The high secretory activity, the immune-modulatory effect, and the homing ability make MSCs and in particular AD-MSCs both a potential tool for the anti-viral drug-delivery in the virus microenvironment and potential cellular therapy. AD-MSCs as the most important exponent of MSCs are expected to reduce the risk of complications and death of patients due to their strong anti-inflammatory and immune-modulatory capabilities, which can improve microenvironment, promote neovascularization and enhance tissue repair capabilities. In this literature review, the role of regenerative strategies through MSCs, AD-MSCs, and adipocyte-secreted exosomal microRNAs (A-SE-miRs) as a potential antiviral therapy was reported, comparing the results found with current research progress on drugs and vaccines in COVID-19 disease

    Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration

    Get PDF
    Stromal vascular fraction (SVF) containing adipose stem cells (ASCs) has been used for many years in regenerative plastic surgery for autologous applications, without any focus on their potential allogenic role. Allogenic SVF transplants could be based on the possibility to use decellularized extracellular matrix (ECM) as a scaffold from a donor then re-cellularized by ASCs of the recipient, in order to develop the advanced therapy medicinal products (ATMP) in fully personalized clinical approaches. A systematic review of this field has been realized in accordance with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, Embase, MEDLINE, Pre-MEDLINE, PsycINFO, CINAHL, Clinicaltrials.gov, Scopus database, and Cochrane databases has been conducted to identify articles and investigations on human allogenic ASCs transplant for clinical use. Of the 341 articles identified, 313 were initially assessed for eligibility on the basis of the abstract. Of these, only 29 met all the predetermined criteria for inclusion according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach, and 19 have been included in quantitative synthesis (meta-analysis). Ninety-one percent of the studies previously screened (284 papers) were focused on the in vitro results and pre-clinical experiments. The allogenic use regarded the treatment of perianal fistulas, diabetic foot ulcers, knee osteoarthritis, acute respiratory distress syndrome, refractory rheumatoid arthritis, pediatrics disease, fecal incontinence, ischemic heart disease, autoimmune encephalomyelitis, lateral epicondylitis, and soft tissue defects. The information analyzed suggested the safety and efficacy of allogenic ASCs and ECM transplants without major side effects

    Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status

    Get PDF
    Conventional therapy of primary bone tumors includes surgical excision with wide resection, which leads to physical and aesthetic defects. For reconstruction of bone and joints, allografts can be supplemented with mesenchymal stem cells (MSCs). Similarly, adipose tissue transfer (ATT) is supplemented with adipose-derived stem cells (ADSCs) to improve the efficient grafting in the correction of soft tissue defects. MSC-like cells may also be used in tumor-targeted cell therapy. However, MSC may have adverse effects on sarcoma development. In the present study, human ADSCs, MSCs and pre-osteoclasts were co-injected with human MNNG-HOS osteosarcoma cells in immunodeficient mice. ADSCs and MSCs, but not the osteoclast precursors, accelerated the local proliferation of MNNG-HOS osteosarcoma cells. However, the osteolysis and the metastasis process were not exacerbated by ADSCs, MSCs, or pre-osteoclasts. In vitro proliferation of MNNG-HOS and Saos-2 osteosarcoma cells was increased up to 2-fold in the presence of ADSC-conditioned medium. In contrast, ADSC-conditioned medium did not change the dormant, quiescent state of osteosarcoma cells cultured in oncospheres. Due to the enhancing effect of ADSCs/MSCs on in vivo/in vitro proliferation of osteosarcoma cells, MSCs may not be good candidates for osteosarcoma-targeted cell therapy. Although conditioned medium of ADSCs accelerated the cell cycle of proliferating osteosarcoma cells, it did not change the quiescent state of dormant osteosarcoma cells, indicating that ADSC-secreted factors may not be involved in the risk of local recurrence

    The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes

    Get PDF
    The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM) on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE)—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs), which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL) than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05) notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL). AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration

    Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice

    Get PDF
    Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering "holds the promise of revolutionizing patient care in the twenty-first century." The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20-30 years from the start of basic science research to clinical utility, demonstrated by contemporary treatments such as bone marrow transplantation. Although great advances have been made in the tissue engineering field, we highlight the barriers that need to be overcome before we see the routine use of tissue-engineered solutions
    corecore