3,253 research outputs found
Electron, ion and neutral temperatures at the magnetic equator
Electron density and electron, ion, and neutral temperature profiles at magnetic equato
A diverse diapsid tooth assemblage from the Early Triassic (Driefontein locality, South Africa) records the recovery of diapsids following the end-Permian mass extinction
Mass extinctions change the trajectory of evolution and restructure ecosystems. The largest mass extinction, the end-Permian, is a particularly interesting case due to the hypothesized delay in the recovery of global ecosystems, where total trophic level recovery is not thought to have occurred until 5–9 million years after the extinction event. Diapsids, especially archosauromorphs, play an important role in this recovery, filling niches left vacant by therapsids and anapsids. However, the nature of lineage and ecological diversification of diapsids is obscured by the limited number of continuous, well-dated stratigraphic sections at the Permian-Triassic boundary and continuing through the first half of the Triassic. The Karoo Basin of South Africa is one such record, and particularly the late Early Triassic (Olenekian) Driefontein locality fills this gap in the diapsid fossil record. We collected a total of 102 teeth of which 81 are identified as diapsids and the remaining 21 as identified as temnospondyls. From the sample, seven distinct tooth morphotypes of diapsids are recognized, six of which are new to the locality. We used a combination of linear measurements, 3D geomorphometrics, and nMDS ordination to compare these morphotypes and made inferences about their possible diets. Although the morphotypes are readily differentiated in nMDS, the overall morphological disparity is low, and we infer five morphotypes are faunivorous with the other two potentially omnivorous or piscivorous based on their morphological similarities with dentitions from extant diapsids, demonstrating an unsampled taxonomic and ecological diversity of diapsids in the Early Triassic based on teeth. Although ecological specialization at Driefontein may be low, it records a diversity of diapsid taxa, specifically of archosauromorph lineages
Entropic force, noncommutative gravity and ungravity
After recalling the basic concepts of gravity as an emergent phenomenon, we
analyze the recent derivation of Newton's law in terms of entropic force
proposed by Verlinde. By reviewing some points of the procedure, we extend it
to the case of a generic quantum gravity entropic correction to get compelling
deviations to the Newton's law. More specifically, we study: (1) noncommutative
geometry deviations and (2) ungraviton corrections. As a special result in the
noncommutative case, we find that the noncommutative character of the manifold
would be equivalent to the temperature of a thermodynamic system. Therefore, in
analogy to the zero temperature configuration, the description of spacetime in
terms of a differential manifold could be obtained only asymptotically.
Finally, we extend the Verlinde's derivation to a general case, which includes
all possible effects, noncommutativity, ungravity, asymptotically safe gravity,
electrostatic energy, and extra dimensions, showing that the procedure is solid
versus such modifications.Comment: 8 pages, final version published on Physical Review
Strong foraging preferences for Ribes alpinum (Saxifragales: Grossulariaceae) in the polyphagous caterpillars of Buff tip moth Phalera bucephala (Lepidoptera: Notodontidae)
Open Access via the Jisc Wiley Open Access Agreement Stiftelsen för Strategisk Forskning (GrantNumber(s): SwedNess) ACKNOWLEDGMENTS We would like to thank Prof Maria Sunnerhagen for allowing access to the precision scale used to weight the caterpillars. ZP is funded by the Swedish Foundation for Strategic Research (SSF) within the Swedish National Graduate School in Neutron Scattering (SwedNess). CONFLICT OF INTEREST The authors have no conflict of interests to declare. AUTHOR CONTRIBUTIONS Juliano Morimoto: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Investigation (equal); Methodology (lead); Visualization (lead); Writing‐original draft (equal); Writing‐review & editing (lead). Zuzanna Pietras: Conceptualization (supporting); Formal analysis (supporting); Investigation (equal); Writing‐original draft (equal); Writing‐review & editing (supporting).Peer reviewedPublisher PD
Kinematics and helicity evolution of a loop-like eruptive prominence
We aim at investigating the morphology, kinematic and helicity evolution of a
loop-like prominence during its eruption. We use multi-instrument observations
from AIA/SDO, EUVI/STEREO and LASCO/SoHO. The kinematic, morphological,
geometrical, and helicity evolution of a loop-like eruptive prominence are
studied in the context of the magnetic flux rope model of solar prominences.
The prominence eruption evolved as a height expanding twisted loop with both
legs anchored in the chromosphere of a plage area. The eruption process
consists of a prominence activation, acceleration, and a phase of constant
velocity. The prominence body was composed of left-hand (counter-clockwise)
twisted threads around the main prominence axis. The twist during the eruption
was estimated at 6pi (3 turns). The prominence reached a maximum height of 526
Mm before contracting to its primary location and partially reformed in the
same place two days after the eruption. This ejection, however, triggered a CME
seen in LASCO C2. The prominence was located in the northern periphery of the
CME magnetic field configuration and, therefore, the background magnetic field
was asymmetric with respect to the filament position. The physical conditions
of the falling plasma blobs were analysed with respect to the prominence
kinematics. The same sign of the prominence body twist and writhe, as well as
the amount of twisting above the critical value of 2pi after the activation
phase indicate that possibly conditions for kink instability were present. No
signature of magnetic reconnection was observed anywhere in the prominence body
and its surroundings. The filament/prominence descent following the eruption
and its partial reformation at the same place two days later suggest a confined
type of eruption. The asymmetric background magnetic field possibly played an
important role in the failed eruption.Comment: 9 pages, 8 figures, in press in A&
Momentum-space Monte Carlo
Using the quenched, reduced form of large-N field theories, we show that it is possible to directly measure momentum-space Green functions, via Monte Carlo, without going through the intermediate step of measurement in position space plus Fourier transformation. This promises to be useful tool for investigating the infrared structure of planar field theories. As an application (and test) of the method, we compute mass-gaps in the quenched U(N) x U(N) lattice chiral model, in D = 1 and 2 dimensions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24595/1/0000003.pd
Cryptic diversity among Yazoo Darters (Percidae: Etheostoma raneyi) in disjunct watersheds of northern Mississippi
© Copyright 2020 Nasser et al. The Yazoo Darter, Etheostoma raneyi (Percidae), is an imperiled freshwater fish species endemic to tributaries of the Yocona and Little Tallahatchie rivers of the upper Yazoo River basin, in northern Mississippi, USA. The two populations are allopatric, isolated by unsuitable lowland habitat between the two river drainages. Relevant literature suggests that populations in the Yocona River represent an undescribed species, but a lack of data prevents a thorough evaluation of possible diversity throughout the range of the species. Our goals were to estimate phylogenetic relationships of the Yazoo Darter across its distribution and identify cryptic diversity for conservation management purposes. Maximum likelihood (ML) phylogenetic analyses of the mitochondrial cytochrome b (cytb) gene returned two reciprocally monophyletic clades representing the two river drainages with high support. Bayesian analysis of cytb was consistent with the ML analysis but with low support for the Yocona River clade. Analyses of the nuclear S7 gene yielded unresolved relationships among individuals in the Little Tallahatchie River drainage with mostly low support, but returned a monophyletic clade for individuals from the Yocona River drainage with high support. No haplotypes were shared between the drainages for either gene. Additional cryptic diversity within the two drainages was not indicated. Estimated divergence between Yazoo Darters in the two drainages occurred during the Pleistocene (\u3c1 million years ago) and was likely linked to repeated spatial shifts in suitable habitat and changes in watershed configurations during glacial cycles. Individuals from the Yocona River drainage had lower genetic diversity consistent with the literature. Our results indicate that Yazoo Darters in the Yocona River drainage are genetically distinct and that there is support for recognizing Yazoo Darter populations in the Yocona River drainage as a new species under the unified species concept
Wildfire alters the structure and seasonal dynamics of nocturnal pollen‐transport networks
Wildfires drive global biodiversity patterns and affect plant–pollinator interactions, and are expected to become more frequent and severe under climate change. Post-fire plant communities often have increased floral abundance and diversity, but the effects of wildfires on the ecological process of pollination are poorly understood. Nocturnal moths are globally important pollinators, but no previous study has examined the effects of wildfire on nocturnal pollination interactions. We investigated the effects of wildfire on nocturnal pollen-transport networks. We analysed the abundance and species richness of moths and flowers, and the structure of these networks, at three burned and three unburned sites in Portugal for two years, starting eight months after a large fire. Nocturnal pollen-transport networks had lower complexity and robustness following the fire than at nearby unburned sites. Overall, 70% of individual moths carried pollen, and moths were found to be transporting pollen from 83% of the flower species present. Burned sites had significantly more abundant flowers, but less abundant and species-rich moths. Individual moths transported more pollen in summer at burned sites, but less in winter; however, total pollen transport by the moth assemblage at burned sites was just 20% of that at unburned sites. Interaction turnover between burned and unburned networks was high. Negative effects of fire upon moths will likely permeate to other taxa through loss of mutualisms. Therefore, if wildfires become more frequent under climate change, community resilience may be eroded. Understanding the responses of ecological networks to wildfire can inform management that promotes resilience and facilitates whole-ecosystem conservation
Lattice Boltzmann Thermohydrodynamics
We introduce a lattice Boltzmann computational scheme capable of modeling
thermohydrodynamic flows of monatomic gases. The parallel nature of this
approach provides a numerically efficient alternative to traditional methods of
computational fluid dynamics. The scheme uses a small number of discrete
velocity states and a linear, single-time-relaxation collision operator.
Numerical simulations in two dimensions agree well with exact solutions for
adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres
- …