47 research outputs found

    Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats

    Get PDF
    Methods. Twenty-eight Wistar rats were randomized to a normal salt (NS) or a high salt (HS) intake. NS and HS rats had free access to tap water or NaCl 2% as drinking water, respectively. After 2 weeks, samples of peritoneum were taken, and TGF-beta(1), Interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF) mRNA expression were quantified with qRT-PCR. Fibrosis and submesothelial PM thickness were scored. EMT was evaluated using fluorescence staining with cytokeratin and alpha smooth muscle actin (alpha-SMA). Results. Dietary salt intake caused peritoneal fibrosis and thickening of the submesothelial layer and induced EMT as identified by colocalization of cytokeratin and alpha-SMA in cells present in the submesothelial layer. Peritoneal TGF-beta(1) and IL-6 mRNA expression were upregulated in the HS group. Conclusion. High dietary salt intake induces EMT and peritoneal fibrosis, a process coinciding with upregulation of TGF-beta 1

    A Bifunctional Adsorber Particle for the Removal of Hydrophobic Uremic Toxins from Whole Blood of Renal Failure Patients

    Get PDF
    Hydrophobic uremic toxins accumulate in patients with chronic kidney disease, contributing to a highly increased cardiovascular risk. The clearance of these uremic toxins using current hemodialysis techniques is limited due to their hydrophobicity and their high binding affinity to plasma proteins. Adsorber techniques may be an appropriate alternative to increase hydrophobic uremic toxin removal. We developed an extracorporeal, whole-blood bifunctional adsorber particle consisting of a porous, activated charcoal core with a hydrophilic polyvinylpyrrolidone surface coating. The adsorption capacity was quantified using analytical chromatography after perfusion of the particles with an albumin solution or blood, each containing mixtures of hydrophobic uremic toxins. A time-dependent increase in hydrophobic uremic toxin adsorption was depicted and all toxins showed a high binding affinity to the adsorber particles. Further, the particle showed a sufficient hemocompatibility without significant effects on complement component 5a, thrombin-antithrombin III complex, or thrombocyte concentration in blood in vitro, although leukocyte counts were slightly reduced. In conclusion, the bifunctional adsorber particle with cross-linked polyvinylpyrrolidone coating showed a high adsorption capacity without adverse effects on hemocompatibility in vitro. Thus, it may be an interesting candidate for further in vivo studies with the aim to increase the efficiency of conventional dialysis techniques

    Serum magnesium and sudden death in European hemodialysis patients

    Get PDF
    Despite suggestions that higher serum magnesium (Mg) levels are associated with improved outcome, the association with mortality in European hemodialysis (HD) patients has only scarcely been investigated. Furthermore, data on the association between serum Mg and sudden death in this patient group is limited. Therefore, we evaluated Mg in a posthoc analysis using pooled data from the CONvective TRAnsport STudy (CONTRAST, NCT00205556), a randomized controlled trial (RCT) evaluating the survival risk in dialysis patients on hemodiafiltration (HDF) compared to HD with a mean follow-up of 3.1 years. Serum Mg was measured at baseline and 6, 12, 24 and 36 months thereafter. Cox proportional hazards models, adjusted for confounders using inverse probability weighting, were used to estimate hazard ratios (HRs) of baseline serum Mg on all-cause mortality, cardiovascular mortality, non-cardiovascular mortality and sudden death. A generalized linear mixed model was used to investigate Mg levels over time. Out of 714 randomized patients, a representative subset of 365 (51%) were analyzed in the present study. For every increase in baseline serum Mg of 0.1 mmol/L, the HR for all-cause mortality was 0.85 (95% CI 0.77-94), the HR for cardiovascular mortality 0.73 (95% CI 0.62-0.85) and for sudden death 0.76 (95% CI 0.62-0.93). These findings did not alter after extensive correction for potential confounders, including treatment modality. Importantly, no interaction was found between serum phosphate and serum Mg. Baseline serum Mg was not related to non-cardiovascular mortality. Mg decreased slightly but statistically significant over time (Ă„ -0.011 mmol/L/year, 95% CI -0.017 to -0.009, p = 0.03). In short, serum Mg has a strong, independent association with all-cause mortality, cardiovascular mortality and sudden death in European HD patients. Serum Mg levels decrease slightly over time

    Molecular Characterization of a Novel Cytoskeleton-related Protein

    No full text
    This work describes the initial molecular characterization of a novel protein, p170, from the african claw frog Xenopus laevis. The cDNA encoding p170 was identified in a random manner when an expression library from X.laevis ovary was screened with an affinity purified antibody originally designed to recognize the replication factor cdc6. The original p170 cDNA fragment was completed by RACE ('rapid amplification of cDNA ends'), and the full length cDNA (4441bp) was found to encode a protein of 1335 aa related to certain cytoskeleton associated proteins. p170 has an extraordinary amino acid composition with a high content of leucine, glutamic acid and glutamine, but low content of proline and glycine. Secondary structure analysis of the p170 protein reveals that the protein has a high potential to form coiled coils. To allow a biochemical characterization of the p170 protein, two fragments were subcloned and expressed in E.coli to generate p170-specific antibodies by the immunization of rabbits. With these antibodies, immunofluorescence microscopy and biochemical cell fractionation experiments show that the p170 protein is preferentially localized in the cytoplasm of cultured Xenopus cells. The p170 protein is highly expressed in eggs and the p170 amount decreases during early development. Computer searches have shown that p170 is conserved in vertebrates, and homologues in human, mouse, cow, pig and zebrafish could be identified by expressed sequence tags (ESTs). On the basis of published sequence information the genomic organization of the complete human and mouse p170 genes could be determined The human p170 gene is located on Chromosome 1 and consists of 25 exons over a length of at least 107 kb. Further experiments are in progress to test the function of the p170 protein in cytoskeleton assemby

    Nalfurafine suppresses pruritogen- and touch-evoked scratching behavior in models of acute and chronic itch in mice

    No full text
    The kappa-opioid agonist, nalfurafine, has been approved in Japan for treatment of itch in patients with chronic kidney disease. We presently investigated if systemic administration of nalfurafine inhibited ongoing or touch-evoked scratching behavior (alloknesis) following acute intradermal injection of histamine or the non-histaminergic itch mediator, chloroquine, in mice. We also investigated if nalfurafine suppressed spontaneous or touch-evoked scratching in an experimental model of chronic dry skin itch. Nalfurafine reduced scratching evoked by histamine and chloroquine. Following acute histamine, but not chloroquine, low-threshold mechanical stimuli reliably elicited directed hindlimb scratching behavior, which was significantly attenuated by nalfurafine. In mice with experimental dry skin, nalfurafine abolished spontaneous scratching but had no effect on alloknesis. Nalfurafine thus appears to be a promising treatment for acute itch as well as ongoing itch of dry skin

    Nalfurafine suppresses pruritogen- and touch-evoked scratching behavior in models of acute and chronic itch in mice.

    No full text
    The kappa-opioid agonist, nalfurafine, has been approved in Japan for treatment of itch in patients with chronic kidney disease. We presently investigated if systemic administration of nalfurafine inhibited ongoing or touch-evoked scratching behavior (alloknesis) following acute intradermal injection of histamine or the non-histaminergic itch mediator, chloroquine, in mice. We also investigated if nalfurafine suppressed spontaneous or touch-evoked scratching in an experimental model of chronic dry skin itch. Nalfurafine reduced scratching evoked by histamine and chloroquine. Following acute histamine, but not chloroquine, low-threshold mechanical stimuli reliably elicited directed hindlimb scratching behavior, which was significantly attenuated by nalfurafine. In mice with experimental dry skin, nalfurafine abolished spontaneous scratching but had no effect on alloknesis. Nalfurafine thus appears to be a promising treatment for acute itch as well as ongoing itch of dry skin

    Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification

    Get PDF
    International audienceVascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg2+) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we investigated the role of miR-29b, -30b, -125b, -133a, -143, and -204 in the protective effect of Mg2+ on VC. HAVSMC were cultured in the presence of 3 mM Pi with or without 2 mM Mg2+ chloride. Total RNA was extracted after 4 h, 24 h, day 3, day 7, and day 10. miR-30b, -133a, and -143 were downregulated during the time course of Pi-induced VC, whereas the addition of Mg2+ restored (miR-30b) or improved (miR-133a, miR-143) their expression. The expression of specific targets Smad1 and Osterix was significantly increased in the presence of Pi and restored by coincubation with Mg2+. As miR-30b, miR-133a, and miR-143 are negatively regulated by Pi and restored by Mg2+ with a congruent modulation of their known targets Runx2, Smad1, and Osterix, our results provide a potential mechanistic explanation of the observed upregulation of these master switches of osteogenesis during the course of VC

    Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium

    No full text
    International audienceBackgroundCardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques.Methodology/Principal FindingsIn HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots.Conclusions/SignificanceFor the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role

    Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion

    No full text
    Background. Peritoneal dialysis (PD) is associated with functional and morphological alterations of the peritoneal membrane (PM). It is hypothesized that vascular endothelial growth factor (VEGF) plays a role in this process. Sulodexide is a glycosaminoglycan with effects on vascular biology. Therefore, the impact of oral sulodexide on PM function and morphology in a rat model of peritoneal perfusion was evaluated. Methods. Rats received 10 mL peritoneal dialysate fluid (PDF) twice daily via a tunnelled PD catheter. The test-PD group (Sul) received 15 mg/kg/day oral sulodexide versus none in the control–PD group (Con). A third group received no PDF (Sham). After 12 weeks, a peritoneal equilibration test was performed and the PM was sampled. Neo-angiogenesis was evaluated using immunostaining with von Willebrand, and epithelial-to-mesenchymal transition (EMT) using co-localization of cytokeratin and α-smooth muscle actin. VEGF was determined in the dialysate by enzyme-linked immunosorbent assay. Results. PD induced loss of ultrafiltration, also in the sulodexide group. Creatinine and glucose transport were better preserved, and sodium dip was more pronounced in the sulodexide group versus control. Submesothelial thickness, neo-angiogenesis and EMT were more pronounced in the Con versus Sul versus Sham group. VEGF in the dialysate, corrected for diffusion was higher in Con and Sul versus Sham. Conclusion. Oral sulodexide administration diminishes neo-vascularization, submesothelial thickening and EMT induced by exposure to PDF in a rat model. As there was no difference in VEGF at the protein level in the dialysate, we hypothesize that oral sulodexide inhibits VEGF locally by binding
    corecore