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ABSTRACT 

Background. 

Dietary salt intake has been linked to hypertension and cardiovascular disease through 

volume - mediated effects. Accumulating evidence points to direct negative influence of salt 

intake independent of volume overload, such as cardiac and renal fibrosis, mediated through 

transforming growth factor beta (TGF-β). Epithelial-to-mesenchymal transition (EMT) has 

been implicated as a key process in chronic fibrotic diseases, such as chronic kidney disease 

or heart failure. The potential role of dietary salt intake on cell transdifferentiation has never 

been investigated. This study analysed the effect of dietary salt intake on EMT and fibrosis in 

the peritoneal membrane (PM) in a rat model.  

Methods.  

Twenty-eight Wistar rats were randomized to a normal salt (NS) or a high salt (HS) intake. 

NS and HS rats had free access to tap water or NaCl 2% as drinking water, respectively. 

After 2 weeks, samples of peritoneum were taken, and TGF-β1, Interleukin 6 (IL-6) and 

vascular endothelial growth factor (VEGF) mRNA expression were quantified with qRT-PCR. 

Fibrosis and submesothelial PM thickness were scored. EMT was evaluated using 

fluorescence staining with cytokeratin and alpha-smooth muscle actin (α-SMA).  

Results. 

Dietary salt intake caused peritoneal fibrosis and thickening of the submesothelial layer and 

induced EMT as identified by co-localization of cytokeratin and α-SMA in cells present in the 

submesothelial layer. Peritoneal TGF-β1 and IL-6 mRNA expression were upregulated in the 

HS group.  

Conclusion. 

High dietary salt intake induces EMT and peritoneal fibrosis, a process coinciding with 

upregulation of TGF-β1. 
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SHORT SUMMARY  

This paper demonstrates that a high dietary salt intake on itself can result in epithelial-to-

mesenchymal transition and fibrosis of the peritoneal membrane. This is of direct clinical 

relevance, as it could explain why already before peritoneal dialysis is started, differences in 

peritoneal membrane quality can be found. Dietary salt restriction is thus of importance in 

patients with chronic kidney disease, even during the pre-dialysis episode. 
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Introduction 

Salt has been linked to hypertension since many years.1;2 Initially it was thought that mainly 

the volume overload, induced by salt retention, was the underlying mechanism and that this 

in turn was the driving factor for left ventricular hypertrophy. Recently, there is accumulating 

evidence that dietary salt intake by itself, even without causing hypertension or volume 

overload, might be deleterious, and results in cardiac remodelling, fibrosis and left ventricular 

hypertrophy.3;4 Also in the kidney, it has been demonstrated that salt intake leads to 

enhanced glomerulosclerosis and deterioration of residual renal function.5-7 It has been 

postulated that upregulation of transforming growth factor beta 1 (TGF-β1) might be one of 

the underlying mechanisms. The effects of TGF-β1 seem to be diminished in the presence of 

nitric oxide (NO),5 implying that salt - mediated upregulation of TGF-β1 might be even more 

deleterious in subjects with NO deficiency,8 such as  in uremia3. TGF-β is a potent inducer of 

epithelial-to-mesenchymal transition (EMT),9;10 a process which has recently been linked to 

chronic fibrotic diseases, such as chronic kidney disease, heart failure, lung and hepatic 

fibrosis.11-15 In these diseases, EMT results in transdifferentiation of epithelial cells to 

myofibroblasts, which invade the interstitial space by transgression of the basal membrane, 

and expand the extracellular matrix. The link between dietary salt intake and cellular 

transdifferentiation has, to our knowledge, never been investigated.  

In long - term peritoneal dialysis (PD) patients, both functional16;17 and morphological18;19 

deterioration of the PM have been described. The morphological changes consist of neo-

vascularisation, fibrosis19 and EMT20. These negative effects have been related to exposure 

to glucose and glucose degradation products contained in the peritoneal dialysate, and to 

uraemia per se.16;21;22 TGF-β1 has been linked to glucose - induced enhanced senescence of 

mesothelial cells,23 peritoneal fibrosis, and induction of EMT in the PM.24;25 De Vriese et al21 

have demonstrated that interaction of advanced glycation end products (AGE) with their cell 

surface receptor for AGE (AGE-RAGE interaction) in uremia induces upregulation of TGF-β1, 
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a process which they could also link to EMT. The role of dietary sodium intake on the 

deterioration of the PM has however never been investigated. It is conceivable that patients 

who have a high dietary salt intake will also need more hypertonic glucose exchanges, 

because they will drink more. In addition, if high salt intake would lead to upregulation of 

TGF-β1 in the PM, in parallel to what has been shown for the heart and the kidneys, or an 

upregulation of vascular endothelial growth factor (VEGF), leading to neoangiogenesis like 

has been shown in the PM of PD patients, this would result in synergistic mechanisms 

leading to a rapid deterioration of the PM. 

The present study has been undertaken to explore the effects of dietary salt loading on the 

PM in normal rats, with specific focus on EMT and fibrosis, and the role of TGF-β1, VEGF 

and interleukin 6 (IL-6).  
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MATERIALS AND METHODS 

 

Laboratory animals 

Experiments were performed in 28 female Wistar rats (Iffa Credo, Brussels, Belgium), 

receiving care in accordance with the national guidelines for care and use of laboratory 

animals. The protocol was approved by the Ethical Committee of Experimental Animal 

Studies at the Faculty of Medicine and Health Sciences, Ghent University, Belgium. 

 

Study Protocol 

The rats were randomly assigned to two groups: NS (normal salt intake) and HS (high salt 

intake). Each group was housed in separate cages. The NS group received normal rat chew 

(rat and mice maintenance chew, Carfil, Oud-Turnhout, Belgium) with a 0.1% salt content, 

and free access to tap water. The HS group received the same rat chew, but had only free 

access to NaCl 2% as drinking water. Rats were weighed daily. After 2 weeks, rats were 

sacrificed. They were anaesthetized with thiobutabarbital (Inactin®,100mg/kg s.c., Sigma, 

St.Louis, MO). The trachea was intubated to facilitate breathing, a carotid artery was 

cannulated for monitoring of arterial blood pressure and the abdomen was opened by a 

midline incision for tissue sampling. Samples of visceral peritoneum (VP) and parietal 

peritoneum (PP) were immediately fixed in a 4% phosphate buffered formaldehyde solution 

(pH=7) (Klinipath, Olen, Belgium) and embedded in paraffin. The VP of the small and large 

bowel was entirely resected and together with biopsies of the PP, snapped frozen in liquid 

nitrogen and maintained at - 80°C until analysis. 
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(Immuno)histochemistry  

From all tissue samples, 5-µm sections were cut with a Leica RM 2145 sliding microtome 

(Leica Microsystems, Nussloch, Germany) for histology and immunohistochemistry. A Sirius 

Red staining (Klinipath, Geel, Belgium) was used to evaluate fibrosis in the VP. Sections of 

the VP were deparaffinized, rehydrated and stained with Giemsa. Subsequently, sections 

were washed and stained with 0.1% Sirius Red, resulting in a brick red staining of all fibrillary 

collagen. To determine the thickness of the PP, the sections were sliced perpendicularly to 

the peritoneal surface, and a classic Masson’s trichome staining was performed. Sections of 

the PP were deparaffinized, rehydrated and stained with Haematoxylin Gill (Merck, Brussels, 

Belgium). Successively, sections went through a series of fluids [1% HCl (VWR, Leuven, 

Belgium), a ponceau (Sigma, Bornem, Belgium)-fuschin (VWR) mixture, phosphomolybdene 

acid and anilin blue (VWR)] to obtain the desired colour. 

Immunofluorescence stainings for alpha smooth muscle actin (α-SMA) and cytokeratin, as 

well as a double staining, were performed. Sections of VP were deparaffinized, rehydrated 

and pre-treated for antigen retrieval in Tris/EDTA (Tris[hydroxymethyl]aminomethane and 

[Ethylenedinitrilo]tetraacetic acid) (Acros Organics, Geel, Belgium) epitope retrieval solution 

(pH 9.0) at 96°C for 30 minutes. After cooling down, free aldehyde groups were blocked with 

NH4Cl to block cross-linking of the antibodies (Ab) to inappropriate structures, and 1% BSA 

/TBS was used to block aspecific binding of the Ab. Subsequently, sections were incubated 

with the primary antibody: either a mouse monoclonal anti-human α-SMA Ab (M0851, Dako, 

Heverlee, Belgium) and/or a polyclonal rabbit anti-cow cytokeratin Ab (Z0622, Dako), 

followed respectively by a secondary goat anti-mouse Ab labelled with a green fluorecent 

dye (A-11017, Invitrogen, Merelbeke, Belgium ) and/or a goat anti-rabbit Ab labelled with a 

red fluorescent dye (A-11072, Invitrogen). Sections were incubated shortly with a DAPI 

nuclear stain (Invitrogen) and finally mounted with Vectashield mounting medium 

(Labconsult, Brussels, Belgium).  
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Morphometric analysis 

Morphometric measurements of the stainings were made by a blinded operator with an 

Olympus BX41 microscope (Olympus, Aartselaar, Belgium) at magnification x400. From 

each experimental animal, three peritoneal samples were analysed. For each sample, three 

sections were analysed quantitatively with a computerized image analysis system (CellD 

software,Olympus). For the Sirius Red staining, the total amount of connective tissue (%) in 

the VP was determined. For the Masson’s trichome staining, the thickness of the PP was 

measured. The double α-SMA/cytokeratin staining was viewed with a fluorescence 

microscope (Axioscoop, Zeiss, Germany) and pictures were taken, using CellF Software 

(Olympus Soft Imaging Solutions, Germany). A semi-quantitative assessment was performed 

independently by two blinded operators. Each section was screened to estimate the extent 

and distribution of colocalization of α-SMA and cytokeratin. Staining results were classified 

from 0 to 3: 0=no, 1=mild-, 2=moderate- and 3=pronounced colocalization and migration of 

mesothelial cells into the interstititium. The results were calculated as the mean of the 

individual scores of the two operators for each sample. 

 

IL-6/TGF-β1/VEGF mRNA determination  

Tissues were homogenized in TRI-Reagent (AB, Applied Biosystems, Foster City, CA, USA) 

on ice using a PowerGen 125 Tissue Homogenizer (Fisher Scientific). An aliquot of 

homogenate was separated into aqueous and organic phases by chloroform (Sigma) 

addition and centrifugation. RNA was precipitated from the aqueous phase by addition of 

isopropanol (Sigma), washed with ethanol (MERCK) and solubilized. Concentration and 

purity of the extracted RNA were determined by spectrophotometry (UV-DU64 

spectrophotometer, Beckman). Each sample was confirmed for integrity using the Agilent 

2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA). Reverse transcription was 
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performed by using the High Capacity cDNA Reverse Transcription kit (AB). Thermal cycling 

conditions were 25°C (10’), 37°C (120’), 85°C (5’’) and 4°C (∞). All cDNA samples were 

stored at -20°C until analysis. The expression of IL-6, TGF-β1 and VEGF mRNA was 

quantified by using the 7900HT Fast Real Time PCR System (AB). The thermal profile 

consisted of two hold steps, one at 50°C (2’) and one at 95°C (10’), followed by 40 cycles 

x[95°C (15’’), 60°C (1’)]. RT - PCR efficiencies for each assay were calculated using the 

formula: Efficiency = [10(1/slope)] – 1. Samples and endogenous control were amplified in 

separate wells in a 96-well-plate. The samples were run in triplicate and normalized to actin 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels, which was used as the 

endogenous control (reference gene). Pre-designed and labelled primer/probe sets were 

purchased from AB (TaqMan® Gene Expression Assays). The relative expression compares 

mRNA expression levels of the genes of interest (GOI; IL-6, TGF-β1, VEGF) to the 

expression levels of the endogenous reference gene (Ref; GAPDH) according to the ∆∆Ct 

method. In this method, the cycle in which the fluorescence level crosses a threshold value 

of fluorescence, during the exponential phase of amplification, is determined. As the 

fluorescence is directly correlated to the amount of double-stranded DNA present in each 

amplification cycle, the number of cycles needed to reach this level can therefore be used to 

calculate relative amounts of starting transcript mRNA. These values are expressed as 

relative values to an endogenous reference (=an internal control gene) to correct for 

differences in transcription rate and sample size between animals. Normalized relative 

quantity (NRQ) values were calculated using the following formula, as described previously 

by M.W.Pfaffl26:   

sample)(control
refΔCt)ref(E

sample)(control
targetΔCt

)target(E
 NRQ

−

−

=   

NRQ-values from HS rats were compared to those from NS rats, and expressed as relative 

increases (fold increase) between groups.   
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Statistical Analysis  

Data analysis was performed with SPSS version 15.0 (SPSS Inc, Chicago, USA). Normal 

distribution of data was tested using Kolmogorov - Smirnov testing. Data are accordingly 

presented as mean ± standard deviation (SD). Normally distributed data were compared with 

the Student’s t-test for independent samples. P-values < 0.05 (two-tailed probability) were 

considered as significant. The increase in relative mRNA expression between NS and HS 

was calculated, and 95% confidence intervals (CI) were determined. Hereto, the natural log 

transformation of the NRQ was calculated, the difference of the mean between the test group 

and the control group was calculated, and this value was used as the exponent of 2, resulting 

in the fold increase with its corresponding 95% CI. For the NS group, data of the NS were 

used both for test and control, which theoretically should result in a mean difference of zero, 

and thus a 1-fold increase in mRNA expression. 
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RESULTS 

General data of laboratory animals (table 1) 

Mean body weight of the rats was 213±7 g. After 2 weeks, rats of the HS group had a lower 

weight, compared with the rats of the NS group. Blood pressure after 2 weeks was not 

different between the HS and NS groups. Haematocrit levels were significantly lower in the 

HS group after 2 weeks. Mean daily water intake in the HS group was 62.5ml/rat, resulting in 

an extra dietary salt load of 1.25g/day/rat.   

 

Peritoneal morphology   

Sirius Red staining of collagen was significantly more pronounced in the HS rats than in the 

NS rats. This was evident both in the submesothelial compact zone as in the interstitial tissue 

(18.8 ± 3.5 vs 24.7 ± 5.8 % of total tissue in the NS vs HS group, respectively; P < 0.01) 

(Figures 1 and 2). The Masson’s Trichome staining showed a significant thickening of the 

submesothelial layer of PP in the HS group (13.7 ± 3.2 vs 18.7 ± 3.7 μm in the NS vs HS 

group, respectively; P < 0.001) (Figures 3 and 4). Staining for the epithelial marker 

cytokeratin was confined to the mesothelial cell layer in all NS animals. In the HS animals, an 

extensive additional staining was observed in the submesothelial tissue. Staining for α-SMA 

was limited to the muscularis of the blood vessels in all the NS rats, but was also found in 

submesothelial areas in HS rats (Figure 5). Double α-SMA/cytokeratin staining with 

fluorescence was virtually absent in all the NS animals, but was significantly prominent in HS 

animals (score 0.25 ± 0.25 vs 1.22 ± 0.32 in the NS vs HS group, respectively; P < 0.001) 

(Figure 6).  
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mRNA expression of IL-6, TGF-β1 and VEGF  

Expression of IL-6 mRNA was upregulated 4.25 (95% CI: 2.22-8.13) times in the HS versus 

the NS group in the VP, and 1.94 (95% CI: 1.37-2.75) times in the PP. 

Expression of TGF-β1 mRNA was upregulated 2.10 (95% CI: 1.31- 3.37) times in the HS vs 

the NS group in the VP, and 1.32 (95% CI: 1.08-1.60) times in the PP. Expression of VEGF 

mRNA was not upregulated in the VP nor in the PP (Figure 7). 
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DISCUSSION 

This study demonstrates that dietary salt intake by itself induces EMT of mesothelial cells as 

identified by co-localization of cytokeratin and α-SMA in the submesothelial layer, and 

fibrosis of the PM as documented by Sirius Red staining, and a thickening of the 

submesothelial layer on Masson’s trichrome staining. Concordant with this, peritoneal TGF-

β1 and IL-6 mRNA expression were increased, but not VEGF mRNA expression. These 

observations suggest that dietary salt loading induces EMT and peritoneal fibrosis, 

potentially by upregulation of TGF-β1 and IL-6 mRNA.  

It is now progressively accepted that EMT underlies epithelial degeneration and fibrogenesis 

in some chronic degenerative, fibrotic disorders, in particular of the heart15, the kidney11, the 

lung14 and the liver13. TGF-β1 is able to induce all the basic steps of EMT: loss of epithelial 

adhesion properties, de novo α-SMA expression and actin reorganization, disruption of 

basement membrane and enhanced cell migration and invasion capacity.27 Also in the PM, 

there are several lines of evidence that TGF-β1 plays a pivotal role in EMT and enhanced 

fibrosis. Margetts et al. used an adenoviral vector to increase TGF-β1 expression in a rat 

model of PD.24 By day 28, a substantial thickening of the PM was observed. Further 

experiments indicated that overproduction of TGF-β1 resulted in an increase in expression of 

genes associated with EMT and fibrosis, such as those regulating type I collagen A2, α-SMA, 

and the zinc finger regulatory protein Snail.25 Seven to fourteen days after exposure to TGF-

β1, appearance of epithelial cells in the submesothelial zone could be demonstrated. This 

phase was associated with disruption of the basement membrane and increased expression 

of matrix metalloproteinase 2. 

In our experiments, there was clear EMT of the peritoneal membrane in the rats fed with a 

high salt diet, as we observed colocalization of cytokeratin and α-SMA, as a hallmark of 

transdifferentiation of mesenchymal cells. In addition, these cells were localized in the 

submesothelial cell layer, as a sign of their transgression through the basal membrane with 
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beginning invasion of the extracellular matrix. To our knowledge, this is the first observation 

of a link between dietary salt intake and EMT of the peritoneal membrane. 

So far, it is unclear how salt upregulates TGF-β1 expression. Ying and Sanders suggested 

that salt-induced shear stress in glomeruli activates tetraethylammonium-sensitive potassium 

channels, resulting in enhanced TGF-β1 production.7 More recently, the same group 

demonstrated that dietary salt induces the activation of proline-rich tyrosine kinase-2 (Pyk2) 

and identified c-Src as an important binding partner of Pyk2 in dietary salt-mediated 

production of TGF-β1. Their data support the hypothesis that activation of Pyk2 recruits and 

activates c-Src and that this complex participates integrally in the vascular production of 

TGF-β1 in response to dietary salt in the rat.28 Others have made a link with digitalis-like 

substances, such as marinobufagenin, which tends to be upregulated by salt loading29;30 and  

results in enhanced formation of pro-collagen in the heart.31 Digitalis-like substances block 

the Na/K-ATPase pumps, and thus increase the intracellular Ca2+ concentration, which can 

activate calcium-dependent and downstream pro-fibrotic pathways. 

Angiotensin II stimulates extracellular matrix protein synthesis through induction of TGF-β in 

rat mesangial cells.32 In addition, there is accumulating evidence that intracellular angiotensin 

II plays an important role in renal cellular growth and fibrotic responses by activating NF-κB 

signalling, which is also on the final common pathway of the TGF-β1 pathway.33 Several 

studies have demonstrated that high salt intake decreases circulating levels of angiotensin II, 

but activates the tissue renin-angiotensin-aldosterone system (RAAS).34;35 In salt-sensitive 

rats, a high salt intake resulted in increased intrarenal RAAS activity, associated with renal 

hypertrophy, fibrosis and damage.34 Liang and Leenen demonstrated that fibrosis under 

these conditions of salt loading and high intrarenal RAAS activity, could be prevented by 

ACE- inhibiting drugs.35 This might explain why use of ACE-inhibitors has a positive impact 

on PM morphology.36 
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Another potential mechanism is that the creation of local hyperosmolarity in the gut activates 

a tonicity-responsive enhancer binding protein (TonEBP)-mediated response. TonEBP 

activates osmoprotective genes to ensure cell function in hostile environments with increased 

interstitial tonicity, such as the renal medulla37 and the lymphatic system38. A recent paper39 

showed that high salt intake increases protein expression of e.g. VEGF in macrophages in 

the subcutaneous tissue through activation of TonEBP. If such an hyperosmolarity-driven 

response would exist in the gut, it would be conceivable that this can be one of the 

mechanisms of EMT and the changing peritoneal morphology during long-term PD, where 

the peritoneum is exposed to hypertonic solutions. Further elaboration of this exciting 

hypothesis is certainly warranted, as it would imply that changing glucose for another 

hyperosmolar osmotic agent will not avoid the long-term peritoneal damage observed during 

PD. Next to TGF-β1, also IL-6 expression is linked to PM degeneration and fibrosis40 and this 

was the case as well as in the present study. It is not clear how salt intake upregulates IL-6 

expression. It might be that upregulation of TGF-β1 leads to upregulation of IL-6. In vitro 

experiments already showed that TGF-β1 can induce IL-6 production in human myoblasts in 

a dose- and time-dependent manner.41 This finding is in agreement with studies which 

reports similar in vitro results in other cell types: TGF-β1 increases IL-6 mRNA levels in 

cultured thymus epithelial cells42 and astrocytes,43 and IL-6 protein secretion in bone marrow 

stromal cells.44 A recent paper by Leung et al showed no clear association between 

upregulation of TGF-β and IL-6 in cultured HPMC’s.40 However, the subtle and complex 

interplay of different cell types in vivo cannot be completely mimicked in vitro with one single 

cell type. In our experiments, there was a slight upregulation of VEGF mRNA in the visceral, 

but not in the parietal membrane. This could point to a mechanism where the upregulation of 

TGF-β1 and IL-6 induces upregulation of VEGF, as in the study by Margetts et al.,45 rather 

than to a direct upregulation of VEGF by the enhanced dietary salt intake. Also here, 

upregulation of TonEBP by creation of a hypertonic environment in the gut, might be 

involved.39 
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Adipocytes are ubiquitous in peritoneal tissue and it is hypothesized that they can be an 

important source of cytokine secretion, including IL-6 and TGF-β.46;47 In our study, salt intake 

induced a more pronounced upregulation of IL-6 and TGF-β1 expression in the VP, where 

adipocytes are abundant, as compared to the PP, where less adipocytes are present.  

Many experiments considering well-defined signalling pathways, e.g. in an in vitro setting, 

use purified stimulating factors in high concentrations, which does not represent the 

biological situation where a complex interplay of different pathways and cells is possible. In 

our model, the only intervention was an increased dietary salt intake, but nevertheless, the 

resulting effects on EMT were still as impressive. 

Of course, the pathways leading to these observations need further elaboration. Potential 

interventions are the use of inhibitors of the renin-angiotensin system, of TGF-β1 and/or of 

TonEBP. Also the potential role of adipocytes and of macrophages infiltrating adipose tissue 

needs further exploration. 

It is surprising that the effects of salt intake appeared so rapidly, after only 2 weeks of 

exposure. However, Ying and Sanders7 also demonstrated enhanced renal fibrosis and 

glomerulosclerosis linked to upregulation of TGF-β after 15 days of salt loading in rats, and 

effects on the vasculature even after 4 days.48 Machnik et al39 found important changes in the 

subcutaneous tissue after 2 weeks of salt loading in rats. All these experiments point out that 

effects of high salt intake seem to appear very rapidly. 

Finally, the question arises in how far our findings impact the application of PD which is a 

well-established renal replacement modality. Unfortunately, its longevity as a technique is 

restricted by functional and morphological deterioration of the PM over time.16;18;19;49 It has 

always been puzzling why some patients do and others do not develop such morphological 

alterations. Although deterioration of the PM is mostly attributed to the exposure to PD fluids 

and peritonitis,16;50-52 large differences in PM structure and function can be found already at 
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the start of PD, as is apparent both from morphological studies, such as the PD biopsy 

registry,19 and from functional studies.16;53 So far, this has been explained by differences in 

comorbidities such as diabetes, genetic background and/or uraemia.54-56 Hence, the changes 

over time of the PM in PD patients are not exclusively induced by the exposure to PD fluids 

and inflammation. Our study adds dietary salt intake to the underlying mechanisms, even 

without exposure to PD fluids. This finding becomes even more relevant in view of the need 

for more hypertonic glucose, which by itself is damaging to the PM, to counter volume 

overload in the case of high salt intake, thus initiating a synergistic pathway to a faster 

deterioration of the PM. This synergism needs further investigation. As such, our findings of 

peritoneal fibrosis and EMT of mesothelial cells induced by dietary salt intake are of direct 

clinical relevance for patients on PD. Dietary salt restriction is thus of importance in patients 

with chronic kidney disease, even during the pre-dialysis phase. 

In conclusion, dietary salt intake in non-uraemic rats induced eEMT and peritoneal fibrosis. 

This was correlated with an upregulation of TGF-β1 and IL-6 mRNA, which could be the link 

between dietary salt intake and EMT. 
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TABLE 

 

Table 1. Characteristics of experimental animals 

  Normal Salt High Salt p-value 

  n = 14 n = 14 

 Initial body weight (g) 211.9 ± 9.1 214.0 ± 5.9 P = NS 

Body weight (g) after 2 weeks 234.9 ± 19.1 217.2 ± 11.5 P < 0.01 

Blood pressure after 2 weeks (mmHg) 140.4 ± 22.0 137.5 ± 15.3 P = NS 

Haematocrit level (%) 46.3 ± 1.7 44.2 ± 1.8 P < 0.01 
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LEGENDS TO FIGURES 

 

Figure 1.  

Sirius Red staining of collagen in the visceral peritoneal membrane (magnification x400). 

Prominent submesothelial and interstitial fibrosis was observed in the ‘high salt’ (C and D) 

animals compared with the ‘normal salt’ animals (A and B).  

 

Figure 2.  

The amount of connective tissue in the visceral peritoneal membrane was significantly 

different between the ‘normal salt’ (18.8 ± 3.5%) group and the ‘high salt’ (24.7 ± 5.8%) group 

(P<0.01). Data are expressed as mean ± SD for groups of 14 rats. 

 

Figure 3.  

Masson’s trichome staining of the parietal peritoneal membrane (magnification x400). The 

submesothelial thickness of the parietal peritoneum was increased in the ‘high salt’ (HS, 

panel B) group vs the normal salt group (NS, panel A). 

 

Figure 4.  

Submesothelial thickness of the parietal peritoneal membrane was significantly different 

between the ‘normal salt’ (13.7 ± 3.2 μm) group and the ‘high salt’ (18.7 ± 3.7 μm) group 

(P<0.001). Data are expressed as mean ± SD for groups of 14 rats. 
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Figure 5.  

α-SMA-, cytokeratin- and a double staining for α-SMA and cytokeratin (magnification, x400). 

Serial sections of the visceral peritoneum from ‘normal salt’ (controls) rats (A-C) and ‘high 

salt’ rats (D-F) were stained for α-SMA (A,D,G), cytokeratin (B,E,H) and double stained for α-

SMA and cytokeratin (C,F,I). In the control rats, only vascular smooth muscle cells stain for 

α-SMA (A), only mesothelial cells stain for cytokeratin (B) and virtually no α-SMA/cytokeratin 

colocalization (C) occurs. In the peritoneal membrane of the ‘high salt’ animals, α-SMA 

staining is found not only in the vascular smooth muscle layer of blood vessels, but also in 

submesothelial tissue (G). Cytokeratin staining (E) is visible in the mesothelial cells and is 

additionally found in the interstitial tissue. Co-localization of α-SMA and cytokeratin (F,I) is 

pronounced in submesothelial tissue. Thick arrow, colocalization. 

 

Figure 6.  

Semi-quantitative scoring for colocalization of α-SMA and cytokeratin. Double α-

SMA/cytokeratin staining was virtually absent in the NS animals, but was significantly 

prominent in the HS animals (score 0.25 ± 0.25 vs 1.22 ± 0.32, in the NS vs HS group 

respectively, P < 0.001). Scoring was done by two independent blinded observers for three 

samples of each experimental animal as 0, no colocalization; 1, mild colocalization; 2, 

moderate colocalization; 3, strong colocalization. 
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Figure 7.  

mRNA expression of IL-6, TGF-β1 and VEGF: fold change high salt (HS) versus normal salt 

(NS). ‘Normal salt’ group = control group, taken as a standard. Fold change of the NS group 

= 1. In the ‘high salt’ group, expression of IL-6 mRNA was 4.25 times [CI: (2.22, 8.13)HS vs 

(0.60, 1.65)NS] more upregulated in the visceral peritoneum (VP) and 1.94 times [CI: (1.37, 

2.75)HS vs (0.71, 1.39)NS] more upregulated in the parietal peritoneum (PP). TGF-β1 mRNA 

expression was 2.1 times (CI: [1.31, 3.37]HS vs [0.79, 1.26]NS) more upregulated in the VP 

and 1.32 times [CI: (1.08, 1.60)HS vs (0.75, 1.31)NS] more upregulated in the PP. VEGF 

mRNA expression was 1.74 times [CI: (0.97, 3.12)HS vs (0.81, 1.22)NS] higher in the VP, but 

was not different between the two groups in the PP [CI: (0.84, 1.00)HS vs (0.83, 1.19)NS].  
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