78 research outputs found

    Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice.

    Get PDF
    The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Kiss1-syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E2)-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH, whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH, both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E2-induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown

    Climate shapes community flowering periods across biomes

    Get PDF
    Aim: Climate shapes the composition and function of plant communities globally, but it remains unclear how this influence extends to floral traits. Flowering phenology, or the time period in which a species flowers, has well-studied relationships with climatic signals at the species level but has rarely been explored at a cross-community and continental scale. Here, we characterise the distribution of flowering periods (months of flowering) across continental plant communities encompassing six biomes, and determine the influence of climate on community flowering period lengths. Location: Australia. Taxon: Flowering plants. Methods: We combined plant composition and abundance data from 629 standardised floristic surveys (AusPlots) with data on flowering period from the AusTraits database and additional primary literature for 2983 species. We assessed abundance-weighted community mean flowering periods across biomes and tested their relationship with climatic annual means and the predictability of climate conditions using regression models. Results: Combined, temperature and precipitation (annual mean and predictability) explain 29% of variation in continental community flowering period. Plant communities with higher mean temperatures and lower mean precipitation have longer mean flowering periods. Moreover, plant communities in climates with predictable temperatures and, to a lesser extent, predictable precipitation have shorter mean flowering periods. Flowering period varies by biome, being longest in deserts and shortest in alpine and montane communities. For instance, desert communities experience low and unpredictable precipitation and high, unpredictable temperatures and have longer mean flowering periods, with desert species typically flowering at any time of year in response to rain. Main conclusions: Current climate conditions shape flowering periods across biomes, with implications for phenology under climate change. Shifts in flowering periods across climatic gradients reflect changes in plant strategies, affecting patterns of plant growth and reproduction as well as the availability of floral resources for pollinators across the landscape

    Disaster declarations associated with bushfires, floods and storms in New South Wales, Australia between 2004 and 2014

    Get PDF
    Australia regularly experiences disasters triggered by natural hazards and New South Wales (NSW) the most populous State is no exception. To date, no publically available spatial and temporal analyses of disaster declarations triggered by hazards (specifically, bushfires, floods and storms) in NSW have been undertaken and no studies have explored the relationship between disaster occurrence and socio-economic disadvantage. We source, collate and analyse data about bushfire, flood and storm disaster declarations between 2004 and 2014. Floods resulted in the most frequent type of disaster declaration. The greatest number of disaster declarations occurred in 2012-2013. Whilst no significant Spearman's correlation exists between bushfire, flood and storm disaster declarations and the strength of the El Niño/Southern Oscillation (ENSO) phase, we observe that bushfire disaster declarations were much more common during El Niño, and flood disaster declarations were five times more common during La Niña phases. We identify a spatial cluster or 'hot spot' of disaster declarations in the northeast of the State that is also spatially coincident with 43% of the most socio-economically disadvantaged Local Government Areas in NSW. The results have implications for disaster risk management in the State. © The Author(s) 2016.Dominey-Howes is supported by ARC grant number DP130100877 Perkins is supported by ARC research grant number DE140100952

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Estrogen Stimulation of Kiss1 Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-ÎČ.

    No full text
    The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Neurons synthesizing kisspeptin are predominantly located in the hypothalamic anteroventral periventricular (AVPV) and arcuate nuclei, but smaller kisspeptin neuronal populations also reside in extrahypothalamic brain regions, such as the medial amygdala (MeA). In adult rodents, estradiol (

    Workers’ sons rescue genetic diversity at the sex locus in an invasive honey bee population

    Full text link
    The hallmark of eusociality is the division of labour between reproductive (queen) and non‐reproductive (worker) females. Yet in many eusocial insects, workers retain the ability to produce haploid male offspring from unfertilized eggs. The reproductive potential of workers has well‐documented consequences for the structure and function of insect colonies, but its implications at the population level are less often considered. We show that worker reproduction in honey bees can have an important role in maintaining genetic diversity at the sex locus in invasive populations. The honey bee sex locus is homozygous‐lethal and, all else being equal, a higher allele number in the population leads to higher mean brood survival. In an invasive population of the honey bee Apis cerana in Australia, workers contribute significantly to male production: 38% of male‐producing colonies are queenless, and these contribute one‐third of all males at mating congregations. Using a model, we show that such male production by queenless workers will increase the number of sex alleles retained in nascent invasive populations following founder events, relative to a scenario in which only queens reproduce. We conclude that by rescuing sex‐locus diversity that would otherwise be lost, workers’ sons help honey bee populations to minimize the negative effects of inbreeding after founder events and so contribute to their success as invaders
    • 

    corecore