323 research outputs found

    Modelling the Impact of Radiation Changes on the Terrestrial Carbon Sink - over the 1900-2100 period

    Get PDF
    Solar Radiation is one of the main requirements for plant functioning and any changes in this field are likely to affect plant photosynthesis. Changes in the solar radiation reaching the land surface caused by aerosols emitted from volcanoes and various anthropogenic sources have occurred during the industrial era. The aim of this study is to estimate the impact of changes in radiation during the 1900-2100 period on land productivity and carbon storage. We use an offline version of the land surface scheme of the Hadley centre model (Cox et al. 1998) which has been modified to account for variations of direct and diffuse radiation on sunlit and shaded canopy photosynthesis. Additionally, we use short wave and photosynthetic active radiation fields simulated by the Hadley centre climate model which takes into account the scattering and absorption of light by tropospheric and stratospheric aerosols. We describe the simulation of the land carbon cycle through the Pinatubo event but also the dimming-brightening period, and diagnose the impact that changes in diffuse radiation had on the atmospheric [CO2] growth-rate. We will also discuss the implications of these results for the future land carbon-sink, under likely changes in the atmospheric aerosol loading

    Impact of merging of historical and future climate data sets on land carbon cycle projections for South America

    Get PDF
    Earth System Models (ESMs) project climate change, but they often contain biases in their estimates of contemporary climate that propagate into simulated futures. Land models translate climate projections into surface impacts, but these will be inaccurate if ESMs have substantial errors. Bias concerns are relevant for terrestrial physiological processes which often respond non-linearly (i.e. contain threshold responses) and are therefore sensitive to absolute environmental conditions as well as changes. We bias-correct the UK Met Office ESM, HadGEM2-ES, against the CRU–JRA observation-based gridded estimates of recent climate. We apply the derived bias corrections to future projections by HadGEM2-ES for the RCP8.5 scenario of future greenhouse gas concentrations. Focusing on South America, the bias correction includes adjusting for ESM estimates that, annually, are approximately 1 degree too cold, for comparison against 21st Century warming of around 4 degrees. Locally, these values can be much higher. The ESM is also too wet on average, by approximately 1 mm·day−1, which is substantially larger than the mean predicted change. The corrected climate fields force the Joint UK Land Environment Simulator (JULES) dynamic global vegetation model to estimate land surface changes, with an emphasis on the carbon cycle. Results show land carbon sink reductions across South America, and in some locations, the net land–atmosphere CO2 flux becomes a source to the atmosphere by the end of this century. Transitions to a CO2 source is where increases in plant net primary productivity are offset by larger enhancements in soil respiration. Bias-corrected simulations estimate the rise in South American land carbon stocks between pre-industrial times and the end of the 2080s is ∼12 GtC lower than that without climate bias removal, demonstrating the importance of merging historical observational meteorological forcing with ESM diagnostics. We present evidence for a substantial climate-induced role of greater soil decomposition in the fate of the Amazon carbon sink

    Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global and Planetary Change 142 (2016): 28-40, doi:10.1016/j.gloplacha.2016.04.011.In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries.With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~0.4 Pg C yr-1 lower present-day heterotrophic respiration but ~0.5 Pg C yr-1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr-1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the enhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.This research is supported by funded projects to Q. Z. National Science Foundation (NSF- 1028291 and NSF- 0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), the NASA Land Use and Land Cover Change program (NASA- NNX09AI26G), and Department of Energy (DE-FG02-08ER64599).2017-05-0

    Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration

    Get PDF
    River runoff is a key attribute of the land surface, that additionally has a strong influence on society by the provision of freshwater. Yet various environmental factors modify runoff levels, and some trends could be detrimental to humanity. Drivers include elevated CO2 concentration, climate change, aerosols and altered land-use. Additionally, nitrogen deposition and tropospheric ozone changes influence plant functioning, and thus runoff, yet their importance is less understood. All these effects are now included in the JULES-CN model. We first evaluate runoff estimates from this model against 42 large basin scales, and then conduct factorial simulations to investigate these mechanisms individually. We determine how different drivers govern the trends of runoff over three decades for which data is available. Numerical results suggest rising atmospheric CO2 concentration is the most important contributor to the global mean runoff trend, having a significant mean increase of +0.18 ± 0.006 mm yr−2 and due to the overwhelming importance of physiological effects. However, at the local scale, the dominant influence on historical runoff trends is climate in 82% of the global land area. This difference is because climate change impacts, mainly due to precipitation changes, can be positive (38% of global land area) or negative (44% of area), depending on location. For other drivers, land use change leads to increased runoff trends in wet tropical regions and decreased runoff in Southeast China, Central Asia and the eastern USA. Modelling the terrestrial nitrogen cycle in general suppresses runoff decreases induced by the CO2 fertilization effect, highlighting the importance of carbon–nitrogen interactions on ecosystem hydrology. Nitrogen effects do, though, induce decreasing trend components for much of arid Australia and the boreal regions. Ozone influence was mainly smaller than other drivers

    Hydroclimatic extremes contribute to asymmetric trends in ecosystem productivity loss

    Get PDF
    Gross primary production is the basis of global carbon uptake. Gross primary production losses are often related to hydroclimatic extremes such as droughts and heatwaves, but the trend of such losses driven by hydroclimatic extremes remains unclear. Using observationally-constrained and process-based model data from 1982-2016, we show that drought-heat events, drought-cold events, droughts and heatwaves are the dominant drivers of gross primary production loss. Losses associated with these drivers increase in northern midlatitude ecosystem but decrease in pantropical ecosystems, thereby contributing to around 70% of the variability in total gross primary production losses. These asymmetric trends are caused by an increase in the magnitude of gross primary production losses in northern midlatitudes and by a decrease in the frequency of gross primary production loss events in pantropical ecosystems. Our results suggest that the pantropics may have become less vulnerable to hydroclimatic variability over recent decades whereas gross primary production losses and hydroclimatic extremes in northern midlatitudes have become more closely entangled

    High sensitivity of future global warming to land carbon cycle processes

    Get PDF
    Unknowns in future global warming are usually assumed to arise from uncertainties either in the amount of anthropogenic greenhouse gas emissions or in the sensitivity of the climate to changes in greenhouse gas concentrations. Characterizing the additional uncertainty in relating CO2 emissions to atmospheric concentrations has relied on either a small number of complex models with diversity in process representations, or simple models. To date, these models indicate that the relevant carbon cycle uncertainties are smaller than the uncertainties in physical climate feedbacks and emissions. Here, for a single emissions scenario, we use a full coupled climate–carbon cycle model and a systematic method to explore uncertainties in the land carbon cycle feedback. We find a plausible range of climate–carbon cycle feedbacks significantly larger than previously estimated. Indeed the range of CO2 concentrations arising from our single emissions scenario is greater than that previously estimated across the full range of IPCC SRES emissions scenarios with carbon cycle uncertainties ignored. The sensitivity of photosynthetic metabolism to temperature emerges as the most important uncertainty. This highlights an aspect of current land carbon modelling where there are open questions about the potential role of plant acclimation to increasing temperatures. There is an urgent need for better understanding of plant photosynthetic responses to high temperature, as these responses are shown here to be key contributors to the magnitude of future change

    Examining ozone susceptibility in the genus Musa (bananas)

    Get PDF
    Tropospheric ozone (O3) is a global air pollutant that adversely affects plant growth. Whereas the impacts of O3 have previously been examined for some tropical commodity crops, no information is available for the pantropical crop, banana (Musa spp.). To address this, we exposed Australia’s major banana cultivar, Williams, to a range of [O3] in open top chambers. In addition, we examined 46 diverse Musa lines growing in a common garden for variation in three traits that are hypothesised to shape responses to O3: (1) leaf mass per area; (2) intrinsic water use efficiency; and (3) total antioxidant capacity. We show that O3 exposure had a significant effect on the biomass of cv. Williams, with significant reductions in both pseudostem and sucker biomass with increasing [O3]. This was accompanied by a significant increase in total antioxidant capacity and phenolic concentrations in older, but not younger, leaves, indicating the importance of cumulative O3 exposure. Using the observed trait diversity, we projected O3 tolerance among the 46 Musa lines growing in the common garden. Of these, cv. Williams ranked as one of the most O3-tolerant cultivars. This suggests that other genetic lines could be even more susceptible, with implications for banana production and food security throughout the tropics

    Historical and future global burned area with changing climate and human demography

    Get PDF
    Wildfires influence terrestrial carbon cycling and represent a safety risk, and yet a process-based understanding of their frequency and spatial distributions remains elusive. We combine satellite-based observations with an enhanced dynamic global vegetation model to make regionally resolved global assessments of burned area (BA) responses to changing climate, derived from 34 Earth system models and human demographics for 1860–2100. Limited by climate and socioeconomics, recent BA has decreased, especially in central South America and mesic African savannas. However, future simulations predict increasing BA due to changing climate, rapid population density growth, and urbanization. BA increases are especially notable at high latitudes, due to accelerated warming, and over the tropics and subtropics, due to drying and human ignitions. Conversely, rapid urbanization also limits BA via enhanced fire suppression in the immediate vicinity of settlements, offsetting the potential for dramatic future increases, depending on warming extent. Our analysis provides further insight into regional and global BA trends, highlighting the importance of including human demographic change in models for wildfire under changing climate
    • …
    corecore