24 research outputs found

    Marshall University Music Department Presents Marshall University Symphony Orchestra

    Get PDF
    https://mds.marshall.edu/music_perf/1221/thumbnail.jp

    Determinants of Adoption Choices of Climate Change Adaptation Strategies in Crop Production by Small Scale Farmers in Some Regions of Central Ethiopia

    Get PDF
    In Sub-Saharan Africa, climate change is set to hit the agricultural sector the most and cause untold suffering particularly for smallholder farmers. Adoption of climate change adaptation strategies aims to minimize adverse effects of climate change on crop yields. However, the capacity of smallholder farmers to choose from appropriate climate change adaptation strategies in SSA is limited. It is therefore imperative to identify and analyze factors that determine the capacity of these farmers to choose appropriate climate change adaptation strategies. Such effort will help policy makers and development practitioners design policies that would help to tackle the problem of food insecurity and poverty afflicting majority of the local people in various regions in the continent. In this study, household data on crop farming systems in central Ethiopia was used and binary and multinomial logit models developed to analyze the data. The binary logit model was used to identify determinants of farmers’ decision to adapt to climate change at all. The multinomial logit model was employed to analyse factors that affect farmers’ adoption choices. Results indicate that farmers´ decisions to choose from several climate change adaptation strategies are influenced by various factors such as access to information on climate change, input and output market, credit facility, extension services and social capital. The implication is that policy makers and development practitioners should focus on improving information flow, access to input and output market, the education level of the household head, and informal social networks that can speed up the adoption of adaptation strategies. The multinomial logit model also shows that farmers´ decision to choose among climate change adaptation strategies is influenced by the type of risk factor they faced and the occurrence of drought or flood.  Accordingly, policy makers and development practitioners should play a significant role by promoting adaptation methods appropriate for particular climate change risk factor such as drought or flood. Key words:  climate change, adaptation strategies, crop production, small scale farmer

    The Efficacy of a Tropical Constructed Wetland for Treating Wastewater during the Wet Season: The Kenyan Experience

    Get PDF
    Constructed Wetlands are among the most promising treatment options for domestic and industrial wastewater streams in places where land is available. They need more land than conventional wastewater treatment plants but occupy less space when compared to waste stabilization ponds. They are generally affordable in operational and maintenance costs while offering effective and reliable service. Constructed Wetlands are manmade wastewater treatment systems that consist of shallow ponds and channels that have been planted with macrophytes. They rely on natural, microbial, biological, physical and chemical processes to treat wastewater. They normally comprise of impervious clay liners clay liners and engineered structures to control the flow direction, wastewater retention times and water levels. Research wok was conducted on a tropical constructed wetland to establish its capability to treat wastewater during the wet season. A comparison of its efficacy with that of conventional wastewater treatment plants was made on the basis of measured water quality parameters. Temperature, pH, dissolved oxygen, and conductivity were measured in situ. Total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD5), chemical oxygen demand (COD) phosphorus, ammonia, and nitrites were analyzed in the laboratory. Faecal coliforms were enumerated and Escherichia coli counts were determined. The TSS values were reduced from a mean of 116 mg/l at the influent point to 24 mg/l at the effluent point, depicting a reduction of 79.31%. Influent TDS averaged 847 mg/l, while the effluent averaged 783mg/l. Wet season BOD5 levels were reduced from an average of 472 mg/l at the inlet point to 24 mg/l at the outlet, depicting a reduction efficiency of 94.9%. COD levels were reduced from a mean of 2174.2 mg/l to 71mg/l, representing a removal efficiency of 96.7%. Phosphorus was reduced from a mean of 14 mg/l to 11 mg/l representing a percentage removal of 21.4%. Levels of ammonia reduced from an influent mean of 61 mg/l to an effluent mean of 48 mg/l representing a percentage reduction of 21.3%. There were a 99.99% reduction for both the faecal coliforms and E.coli counts. Conductivity of wastewater increased from 1.08mS to 1.98mS, while the p H increased from 6.23 at the inlet point to 7.99 at the outlet of the system. Temperature and dissolved oxygen measurements showed a diurnal variation. The wet season wastewater heavy metal concentrations were in the following ranges: Pb (7.9-11.9ppm), Cd (1.0-3.8ppm), Cr (1.4-8.8ppm), Zn (0.1-10.4ppm), Ni (2.2-8.3ppm) with Cu not being detected in the wastewater samples. Overall, tropical constructed wetlands are effective in treating wastewater streams and they perform a lot better than the popularly used waste stabilization ponds. This paper recommends their widespread use within the tropics as the prevalence of warm temperatures all the year round enhances their performance. Keywords: Constructed Wetlands, Microbial, Physical, Chemical, Heavy metals, Tropic

    PDBImages: A Command Line Tool for Automated Macromolecular Structure Visualization

    Full text link
    Summary: PDBImages is an innovative, open-source Node.js package that harnesses the power of the popular macromolecule structure visualization software Mol*. Designed for use by the scientific community, PDBImages provides a means to generate high-quality images for PDB and AlphaFold DB models. Its unique ability to render and save images directly to files in a browserless mode sets it apart, offering users a streamlined, automated process for macromolecular structure visualization. Here, we detail the implementation of PDBImages, enumerating its diverse image types and elaborating on its user-friendly setup. This powerful tool opens a new gateway for researchers to visualize, analyse, and share their work, fostering a deeper understanding of bioinformatics. Availability and Implementation: PDBImages is available as an npm package from https://www.npmjs.com/package/pdb-images. The source code is available from https://github.com/PDBeurope/pdb-images. Contact: [email protected], [email protected]: 7 pages, 1 figure, to be submitted to Bioinformatic

    Sources, Accessibility and Reliability of Water for Various Uses in Ruiru District of Kiambu County, Kenya

    Get PDF
    Numerous challenges regarding the availability of water availability for various socioeconomic development activities exist in many areas across the globe. This is particularly so in most peri-urban areas where scarcity is one of the critical problems affecting sustainable development of these areas. In this study, sources, accessibility and reliability of water in Ruiru District of Kiambu County in Kenya were examined. A multistage sampling design using both stratified and random sampling techniques was used to select the required sample. A household survey approach with the aid of questionnaires and observation record sheets were used to collect data from representative sample of 198 households in three different clusters. The data collected was analyzed using frequencies, percentages and ranking. The study established the main water sources to be tap water, borehole, wells, rivers and Community Based Organizatio

    PDBe: towards reusable data delivery infrastructure at protein data bank in Europe

    Get PDF
    © 2017 The Authors. Published by OUP. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1093/nar/gkx1070The Protein Data Bank in Europe (PDBe, pdbe.org) is actively engaged in the deposition, annotation, remediation, enrichment and dissemination of macromolecular structure data. This paper describes new developments and improvements at PDBe addressing three challenging areas: data enrichment, data dissemination and functional reusability. New features of the PDBe Web site are discussed, including a context dependent menu providing links to raw experimental data and improved presentation of structures solved by hybrid methods. The paper also summarizes the features of the LiteMol suite, which is a set of services enabling fast and interactive 3D visualization of structures, with associated experimental maps, annotations and quality assessment information. We introduce a library of Web components which can be easily reused to port data and functionality available at PDBe to other services. We also introduce updates to the SIFTS resource which maps PDB data to other bioinformatics resources, and the PDBe REST API.Wellcome Trust [104948]; UK Biotechnology and Biological Sciences Research Council [BB/M011674/1, BB/N019172/1, BB/M020347/1]; European Union [284209]; European Molecular Biology Laboratory (EMBL). Funding for open access charge: EMBL.Published versio

    3D-Beacons: decreasing the gap between protein sequences and structures through a federated network of protein structure data resources

    Get PDF
    While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank

    The Enterics for Global Health (EFGH) Shigella Surveillance Study in Kenya

    Get PDF
    Background: Although Shigella is an important cause of diarrhea in Kenyan children, robust research platforms capable of conducting incidence-based Shigella estimates and eventual Shigella-targeted clinical trials are needed to improve Shigella-related outcomes in children. Here, we describe characteristics of a disease surveillance platform whose goal is to support incidence and consequences of Shigella diarrhea as part of multicounty surveillance aimed at preparing sites and assembling expertise for future Shigella vaccine trials. Methods: We mobilized our preexisting expertise in shigellosis, vaccinology, and diarrheal disease epidemiology, which we combined with our experience conducting population-based sampling, clinical trials with high (97%–98%) retention rates, and healthcare utilization surveys. We leveraged our established demographic surveillance system (DSS), our network of healthcare centers serving the DSS, and our laboratory facilities with staff experienced in performing microbiologic and molecular diagnostics to identify enteric infections. We joined these resources with an international network of sites with similar capabilities and infrastructure to form a cohesive scientific network, designated Enterics for Global Health (EFGH), with the aim of expanding and updating our knowledge of the epidemiology and adverse consequences of shigellosis and enriching local research and career development priorities. Conclusions: Shigella surveillance data from this platform could help inform Shigella vaccine trials

    PDBe: improved findability of macromolecularstructure data in the PDB

    Get PDF
    © 2019 The Authors. Published by OUP. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1093/nar/gkz990The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.The Protein Data Bank in Europe is supported by European Molecular Biology Laboratory-European Bioinformatics Institute; Wellcome Trust [104948]; Biotechnology and Biological Sciences Research Council [BB/N019172/1, BB/G022577/1, BB/J007471/1, BB/K016970/1, BB/K020013/1, BB/M013146/1, BB/M011674/1, BB/M020347/1, BB/M020428/1, BB/P024351/1]; European Union [284209]; ELIXIR and Open Targets. Funding for open access charge: EMB

    PDBe-KB: a community-driven resource for structural and functional annotations.

    Get PDF
    The Protein Data Bank in Europe-Knowledge Base (PDBe-KB, https://pdbe-kb.org) is a community-driven, collaborative resource for literature-derived, manually curated and computationally predicted structural and functional annotations of macromolecular structure data, contained in the Protein Data Bank (PDB). The goal of PDBe-KB is two-fold: (i) to increase the visibility and reduce the fragmentation of annotations contributed by specialist data resources, and to make these data more findable, accessible, interoperable and reusable (FAIR) and (ii) to place macromolecular structure data in their biological context, thus facilitating their use by the broader scientific community in fundamental and applied research. Here, we describe the guidelines of this collaborative effort, the current status of contributed data, and the PDBe-KB infrastructure, which includes the data exchange format, the deposition system for added value annotations, the distributable database containing the assembled data, and programmatic access endpoints. We also describe a series of novel web-pages-the PDBe-KB aggregated views of structure data-which combine information on macromolecular structures from many PDB entries. We have recently released the first set of pages in this series, which provide an overview of available structural and functional information for a protein of interest, referenced by a UniProtKB accession
    corecore