9 research outputs found

    Neurofilament as a potential biomarker for spinal muscular atrophy

    Get PDF
    Abstract Objective To evaluate plasma phosphorylated neurofilament heavy chain (pNF‐H) as a biomarker in spinal muscular atrophy (SMA). Methods Levels of pNF‐H were measured using the ProteinSimple® platform in plasma samples from infants with SMA enrolled in ENDEAR (NCT02193074) and infants/children without neurological disease. Results Median pNF‐H plasma level was 167.0 pg/mL (7.46–7,030; n = 34) in children without SMA (aged 7 weeks–18 years) and was higher in those aged < 1 versus 1–18 years (P = 0.0002). In ENDEAR participants with infantile‐onset SMA, median baseline pNF‐H level (15,400 pg/mL; 2390–50,100; n = 117) was ~10‐fold higher than that of age‐matched infants without SMA (P < 0.0001) and ~90‐fold higher than children without SMA (P < 0.0001). Higher pretreatment pNF‐H levels in infants with SMA were associated with younger age at symptom onset, diagnosis, and first dose; lower baseline Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders score; and lower peroneal compound muscle potential amplitude. Nusinersen treatment was associated with a rapid and greater decline in pNF‐H levels: nusinersen‐treated infants experienced a steep 71.9% decline at 2 months to 90.1% decline at 10 months; sham control–treated infants declined steadily by 16.2% at 2 months and 60.3% at 10 months. Interpretation Plasma pNF‐H levels are elevated in infants with SMA. Levels inversely correlate with age at first dose and several markers of disease severity. Nusinersen treatment is associated with a significant decline in pNF‐H levels followed by relative stabilization. Together these data suggest plasma pNF‐H is a promising marker of disease activity/treatment response in infants with SMA

    Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases.

    No full text
    Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis

    Preventing amyotrophic lateral sclerosis : insights from pre-symptomatic neurodegenerative diseases

    No full text
    Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned - more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers - we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis

    Design of a randomized, placebo-controlled, phase 3 trial of tofersen initiated in clinically presymptomatic SOD1 variant carriers : the Atlas study

    No full text
    Despite extensive research, amyotrophic lateral sclerosis (ALS) remains a progressive and invariably fatal neurodegenerative disease. Limited knowledge of the underlying causes of ALS has made it difficult to target upstream biological mechanisms of disease, and therapeutic interventions are usually administered relatively late in the course of disease. Genetic forms of ALS offer a unique opportunity for therapeutic development, as genetic associations may reveal potential insights into disease etiology. Genetic ALS may also be amenable to investigating earlier intervention given the possibility of identifying clinically presymptomatic, at-risk individuals with causative genetic variants. There is increasing evidence for a presymptomatic phase of ALS, with biomarker data from the Pre-Symptomatic Familial ALS (Pre-fALS) study showing that an elevation in blood neurofilament light chain (NfL) precedes phenoconversion to clinically manifest disease. Tofersen is an investigational antisense oligonucleotide designed to reduce synthesis of superoxide dismutase 1 (SOD1) protein through degradation of SOD1 mRNA. Informed by Pre-fALS and the tofersen clinical development program, the ATLAS study (NCT04856982) is designed to evaluate the impact of initiating tofersen in presymptomatic carriers of SOD1 variants associated with high or complete penetrance and rapid disease progression who also have biomarker evidence of disease activity (elevated plasma NfL). The ATLAS study will investigate whether tofersen can delay the emergence of clinically manifest ALS. To our knowledge, ATLAS is the first interventional trial in presymptomatic ALS and has the potential to yield important insights into the design and conduct of presymptomatic trials, identification, and monitoring of at-risk individuals, and future treatment paradigms in ALS.Errata: Benatar, M., Wuu, J., Andersen, P.M. et al. Correction to: Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics (2022). https://doi.org/10.1007/s13311-022-01286-9</p

    Keratin 14-Null Cells as a Model to Test the Efficacy of Gene Therapy Approaches in Epithelial Cells

    Get PDF
    Skin fragility disorders caused by keratin mutations are incurable, and a better understanding of their etiology is needed to find new ways to improve and treat these conditions. The best-studied skin fragility disorder is epidermolysis bullosa simplex (EBS), an autosomal dominant condition caused by mutations in keratin 5 (K5) or K14. To analyze disease mechanisms and develop gene therapy strategies, we have used keratinocyte cell lines derived from EBS patients as model systems. Here, we describe two cell lines established from EBS patients with K14-null mutations. We analyze the responses of these cells to stress assays previously shown to discriminate between wild-type and keratin-mutant keratinocytes, to directly evaluate the efficacy of rescuing K14-null cells by supplementation with wild-type K14 complementary DNA (cDNA). The K14-null cells show elevated levels of stress correlating with reduced normal keratin function. By transfecting wild-type K14 into these cells, we demonstrate “proof of principle” that an add-back approach can significantly rescue the normal keratinocyte behavior profile. These K14-null cell lines provide a disease model for studying the effects of keratin ablation in EBS patients and to test the efficacy of gene add-back and other therapy approaches in keratinocytes
    corecore