12 research outputs found

    Electron microscopy analysis of FcRγ localization after its capture by T cells by trogocytosis

    Get PDF
    T cells acquire various proteins from their cellular partners by the process of trogocytosis. We recently demonstrated that the FcγRIIIA receptor and its associated FcRγ are captured by T cells during their co-culture with FcγR-expressing target cells upon both antigen- or antibody-mediated stimulation. Interestingly, we found that FcR captured by T cells could bind ligands but did not transmit detectable intracellular signals or signaling-depending functions upon ligand binding suggesting their improper integration in the recipient T cell membrane. In this study, we provide morphological data in support of this hypothesis. Indeed, we show that the FcRγ-subunit, which we used as a fusion to GFP, was clearly present at the plasma membrane of donor cells, but was detected within structures that were in close contact of, but apparently not integrated in, the plasma membrane of recipient T cells

    Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1

    Get PDF
    Brucella is an intracellular pathogen able to persist for long periods of time within the host and establish a chronic disease. We show that soon after Brucella inoculation in intestinal loops, dendritic cells from ileal Peyer's patches become infected and constitute a cell target for this pathogen. In vitro, we found that Brucella replicates within dendritic cells and hinders their functional activation. In addition, we identified a new Brucella protein Btp1, which down-modulates maturation of infected dendritic cells by interfering with the TLR2 signaling pathway. These results show that intracellular Brucella is able to control dendritic cell function, which may have important consequences in the development of chronic brucellosis

    Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions.

    No full text
    10 pagesInternational audienceElectrophoretic mobility measurements and surface adsorption of Ca on living, inactivated, and heat-killed haloalkaliphilic Rhodovulum steppense, A-20s, and halophilic Rhodovulum sp., S-17-65 anoxygenic phototrophic bacteria (APB) cell surfaces were performed to determine the degree to which these bacteria metabolically control their surface potential equilibria. Zeta potential of both species was measured as a function of pH and ionic strength, calcium and bicarbonate concentrations. For both live APB in 0.1M NaCl, the zeta potential is close to zero at pH from 2.5 to 3 and decreases to -30 to -40 mV at pH of 5-8. In alkaline solutions, there is an unusual increase of zeta potential with a maximum value of -10 to -20 mV at a pH of 9-10.5. This increase of zeta potential in alkaline solutions is reduced by the presence of NaHCO(3) (up to 10 mM) and only slightly affected by the addition of equivalent amount of Ca. At the same time, for inactivated (exposure to NaN(3), a metabolic inhibitor) and heat-killed bacteria cells, the zeta potential was found to be stable (-30 to -60 mV, depending upon the ionic strength) between pH 5 and 11 without any increase in alkaline solutions. Adsorption of Ca ions on A-20s cells surface was more significant than that on S-17-65 cells and started at more acidic pHs, consistent with zeta potential measurements in the presence of 0.001-0.01 mol/L CaCl(2). Overall, these results indicate that APB can metabolically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting/avoiding Ca ions to prevent CaCO(3) precipitation in the vicinity of cell surface and thus, cell incrustation

    Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy

    No full text
    International audienceAn amphiphilic polymer (CmPOX) based on poly(2-methyl-2-oxazoline) linked to a hydrophobic part composed of an aliphatic chain ended by a photo-active coumarin group has been synthesized. It exhibits the ability of forming small polymeric self-assemblies, typically of ca. 10 nm in size which were characterized by TEM, cryo-TEM and DLS. The nanocarriers were further formulated to yield photo-crosslinked systems by dimerization of coumarin units of a coumarinfunctionalized poly(methyl methacrylate) (CmPMMA) and CmPOX. The formed vectors were used to encapsulate Pheophorbide a, a known photosensitizer for PhotoDynamic Therapy. Cytotoxicity as well as photooxicity experiments led in vitro on human tumor cells revealed the great potential of these nanovectors for photodynamic therapy

    Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes

    No full text
    International audiencePodosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force

    Podosome Force Generation Machinery: A Local Balance between Protrusion at the Core and Traction at the Ring

    No full text
    International audienceDetermining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator

    Discovery of High Abundances of Aster-Like Nanoparticles in Pelagic Environments: Characterization and Dynamics

    Get PDF
    International audienceThis study reports the discovery of Aster-Like Nanoparticles (ALNs) in pelagic environments. ALNs are pleomorphic, with three dominant morphotypes which do not fit into any previously defined environmental entities [i.e., ultramicro-prokaryotes, controversed nanobes, and non-living particles (biomimetic mineralo-organic particles, natural nanoparticles or viruses)] of similar size. Elemental composition and selected-area electron diffraction patterns suggested that the organic nature of ALNs may prevail over the possibility of crystal structures. Likewise, recorded changes in ALN numbers in the absence of cells are at odds with an affiliation to until now described viral particles. ALN abundances showed marked seasonal dynamics in the lakewater, with maximal values (up to 9.0 ± 0.5 × 10 7 particles·mL −1) reaching eight times those obtained for prokaryotes, and representing up to about 40% of the abundances of virus-like particles. We conclude that (i) aquatic ecosystems are reservoirs of novel, abundant, and dynamic aster-like nanoparticles, (ii) not all virus-like particles observed in aquatic systems are necessarily viruses, and (iii) there may be several types of other ultra-small particles in natural waters that are currently unknown but potentially ecologically important

    Mechanistic Insights into Polyion Complex Associations

    Get PDF
    Polyion complex (PIC) micelles formed from the electrostatic interaction between oppositely charged polymers have been studied for their promising applications in the biomedical field as drug carriers or vectors for gene delivery. In spite of their asset of possible high drug loading, their formation process remains poorly studied. In this work, we investigate the properties of a series of PICs based on poly(ethylene oxide-b-acrylic acid) (PEO–PAA)/dendrigraft poly(L-lysine) (DGL3), using PEO–PAA with different compositions and average molecular weights. For each PEO–PAA/DGL3 pair, the complexes were characterized as a function of the ratios between acid and amine moieties combining different techniques: dynamic light scattering (DLS), flow field-flow fractionation (FlFFF), small-angle X-ray scattering (SAXS), and relaxometry. The coupling of batch techniques, i.e., DLS, SAXS, and relaxometry, together with a soft separation technique like FlFFF enabled a finer analysis to elucidate subtle details of the association process and of the polydispersity of the complexes. We show that the formation of PICs is more complex than previously described. In particular, we demonstrate that PICs with stoichiometry 1:1 may form at low ratios provided that the acidic block is long enough to neutralize the cationic dendrigraft with few polymer chains. Moreover, in such conditions, PICs with stoichiometry 1:1 often coexist with free dendritic polymers and other associated complex species
    corecore