22 research outputs found
Ultraschnelle kohÀrente Abbildung von Nanopartikeln mit Hilfe von Röntgen- Laser Strahlung
Abstract Zusammenfassung Publications Introduction Currently used imaging
techniques Towards a new method Free-electron lasers Serial coherent
diffractive imaging Sorting diffraction patterns The orientation problem
Motivation and outline Part I Background 1 The theory of coherent X-ray
diffractive imaging 1.1 Lensless imaging: the phase problem 1.1.1 Phase
retrieval 1.1.2 Iterative phase retrieval algorithms 1.2 The orientation
problem 1.3 Resolution and the number of required diffraction snapshots 2
Digital image analysis and pattern recognition 2.1 Classification 2.2 Feature
extraction 2.2.1 Intensity variations 2.2.2 Rotation symmetry 2.2.3
"Eigenpatterns" 2.3 Supervised classification 2.3.1 Partitioning the feature
space 2.3.2 Random forest classifier Part II Results 3 Geodesic orientation
recovery 3.1 Establishing and interpreting similarities among diffraction
patterns 43 3.2 Identifying in-plane and out-of-plane rotations and combining
them to span the orientation space 3.3 gipral - an orientation recovery
algorithm in ten steps 3.4 Computational complexity 3.5 Generalization to
symmetric objects 4 On-line analysis 4.1 On-line hit rate estimation 4.2 On-
line size estimation 4.3 On-line feedback on sample concentration 4.4 CASS - a
framework for on-line analysis 5 Application 5.1 nanorice - an ellipsoidal
iron oxide nanoparticle 5.1.1 Data acquisition 5.1.2 Classification results
5.1.3 Orientation recovery results 5.1.4 Phase retrieval 5.1.5 Data
inhomogeneity 5.1.6 Using a simple geometric consideration as a control 5.2
Preliminary application to virus diffraction data 5.2.1 Samples 5.2.2 Results
- aerosol injection 5.2.3 Results - liquid jet injection x Table of Contents 6
Discussion 6.1 Comparison to other orientation recovery approaches 6.2 Towards
the imaging of biological samples 6.3 Room for improvements / outlook 6.3.1
Technical improvements 6.3.2 direct measurement and manipulation of
orientations 6.4 Conclusions Appendix A Existing approaches to the orientation
problem A.1 Correlation A.2 Common arc A.3 Bayesian methods A.4 Diffusion map
/ graph theory Appendix B Implementation B.1 Hardware optimization B.2
Parallelization B.2.1 Shared memory parallelization B.2.2 Distributed memory
parallellization B.3 Class hierarchies Appendix C Mathematical Tools C.1
Rodrigues Frank parametrization C.2 Object symmetries in Rodrigues-Frank space
C.3 extending geodesics C.4 Projections and mirror symmetry C.5
Orthogonalizing in-plane and out-of-plane rotations C.6 Discontinued:
neighborhood preserving embedding Appendix D Publications Acknowledgments
Index ReferencesCoherent diffractive imaging with X-ray free-electron lasers (X-FEL) promises
high-resolution structure determination of single microscopic particles
without the need for crystallization. The diffraction signal of small samples
can be very weak, a difficulty that can not be countered by merely increasing
the number of photons because the sample would be damaged by a high absorbed
radiation dose. Traditional X-ray crystallography avoids this problem by
bringing many sample particles into a periodic arrangement, which amplifies
the individual signals while distributing the absorbed dose. Depending on the
sample, however, crystallization can be very difficult or even impossible.
This thesis presents algorithms for a new imaging approach using X-FEL
radiation that works with single, non-crystalline sample particles. X-FELs can
deliver X-rays with a peak brilliance many orders of magnitude higher than
conventional X-ray sources, compensating for their weak interaction cross
sections. At the same time, FELs can produce ultra-short pulses down to a few
femtoseconds. In this way it is possible to perform ultra-fast imaging,
essentially âfreezingâ the atomic positions in time and terminating the
imaging process before the sample is destroyed by the absorbed radiation. This
thesis primarily focuses on the three-dimensional reconstruction of single
(and not necessarily crystalline) particles using coherent diffractive imaging
at X-FELs: in order to extract three-dimensional information from scattering
data, two-dimensional diffraction patterns from many different viewing angles
must be combined. Therefore, the diffraction signal of many identical sample
copies in random orientations is measured. The main result of this work is a
globally optimal algorithm that can recover the sample orientations solely
based on the diffraction signal, enabling three-dimensional imaging for
arbitrary samples. The problem of finding three-dimensional orientations is
reduced to one-dimensional sub-problems by arranging diffraction patterns in
geodesic similarity sequences. Relations between the one-dimensional sub-
problems are established by identifying rotations about the X-ray axis and
one-dimensional solutions are combined into a three-dimensional orientation
recovery. The global optimization approach ensures that information is
extracted from the whole diffraction dataset, not only individual diffraction
patterns. Therefore this method can cope with diffraction data sets consisting
of individual diffraction patterns with weak signals. The geodesic approach
can handle datasets from inhomogeneous samples as well as samples with
symmetries. A successful application to experimental X-FEL data is shown,
resulting in the first three-dimensional reconstruction of a nanoparticle
using X-FEL coherent diffractive imaging.KohÀrente Abbildung mit Röntgenlasern (X-ray free-electron lasers, X-FEL)
ermöglicht die Strukturbestimmung von einzelnen mikroskopischen Teilchen mit
hoher Auflösung, ohne dass ihre Kristallisation notwendig ist. Das gestreute
Signal von kleinen Proben kann jedoch sehr schwach sein. Diese Schwierigkeit
kann nicht einfach durch mehr einfallende Photonen umgangen werden, da die
Probe bei der Absorption einer hohen Strahlendosis Schaden nimmt. Herkömmliche
Kristallographie vermeidet dieses Problem durch das periodische Anordnen
vieler Probenteilchen, wodurch das Signal verstÀrkt und die Strahlendosis
verteilt wird. Je nach Probe kann die Kristallisation jedoch sehr aufwÀndig
oder gar unmöglich sein. Diese Arbeit behandelt Algorithmen fĂŒr ein neues
bildgebendes Verfahren mit X-FEL Strahlung, das ohne Kristallisation auskommt.
Mit X-FELs können Röntgenstrahlen mit sehr viel höherer Spitzenbrillanz
erzeugt werden als mit herkömmlichen Röntgenquellen; somit können die
schwachen Wechselwirkungsquerschnitte von Röntgenphotonen mit Materie
kompensiert werden. Gleichzeitig können diese Röntgenstrahlen sehr kurz
gepulst werden, bis hin zu wenigen Femtosekunden. Dadurch kann eine Bildgebung
erreicht werden, die so schnell ist, dass die Atompositionen zeitlich
âeingefrorenâ werden und ein Abbild der Probe erzeugt wird, bevor diese durch
die absorbierte Strahlung zerstört wird. Das Hauptaugenmerk dieser Arbeit
liegt auf der dreidimensionalen Rekonstruktion: Um dreidimensionale
Information aus Streudaten zu gewinnen ist es erforderlich viele
zweidimensionale Streubilder aus verschiedenen Blickwinkeln zusammenzufassen.
Dazu werden Streubilder von vielen identischen Kopien der Probe sequentiell
gesammelt, wobei jede Probenkopie eine zufÀllige Orientierung hat. Das
wichtigste Ergebnis dieser Arbeit ist ein global optimaler Algorithmus, der
die Orientierungen allein mit Hilfe der Streubilder rekonstruiert, wodurch
eine dreidimensionale Bildgebung fĂŒr beliebige Proben möglich wird. Dazu wird
das Problem dreidimensionale Orientierungen zu rekonstruieren in
eindimensionale Teilprobleme unterteilt, indem Streubilder aufgrund ihrer
Ăhnlichkeit in geodĂ€tische Bildfolgen angeordnet werden. Die eindimensionalen
Teilprobleme werden dann miteinander in Bezug gebracht, indem gemeinsame
Drehungen um die Röntgenachse identifiziert werden. Somit können
eindimensionale Lösungen in eine dreidimensionale Rekonstruktion der
Orientierungen kombiniert werden. Die globale Optimierung stellt dabei sicher,
dass die Information des gesamten Datensatz genutzt wird, anstatt nur einzelne
Streubilder zu berĂŒcksichtigen. Aus diesem Grund kann diese Methode auch bei
DatensÀtzen eingesetzt werden, bei denen einzelne Streubilder nur ein
schwaches Signal erhalten. Die auf GeodÀten beruhende Methode kann sowohl
DatensÀtze von inhomogenen Proben bewÀltigen, als auch mit Objektsymmetrien
umgehen. In dieser Arbeit wird eine erfolgreiche Anwendung auf experimentelle
X-FEL Daten gezeigt, die die erste dreidimensionalen Rekonstruktion eines
Nanopartikels mit Hilfe von kohÀrenten Abbildungen mit X-FELs ermöglichte
Indications of Radiation Damage in Ferredoxin Microcrystals using High-Intensity X-FEL Beams
Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations
Diffraction data of core-shell nanoparticles from an X-ray free electron laser
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7ânm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research
Recommended from our members
Free-electron laser data for multiple-particle fluctuation scattering analysis.
Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100â000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided
Recommended from our members
Free-electron laser data for multiple-particle fluctuation scattering analysis.
Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100â000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided
x-Ray Free-Electron Lasers
Free-electron lasers (FELs) operating in the soft and hard x-ray wavelength range deliver unprecedented peak and average brilliance, opening new scientific opportunities in many disciplines. A striking advance compared to third-generation synchrotron-based light sources is the duration of the photon pulse: a few to some hundred femtoseconds with peak powers in the gigawatt range are delivered routinely today. Probing femtosecond-scale dynamics in atomic and molecular reactions using, for instance, a combination of x-ray and optical pulses are now possible. Single-shot diffraction imaging of biological objects and molecules allows to produce movies of femtosecond-scale reactions. This chapter describes the basic physics of high-gain self-amplified spontaneous emission FELs, discusses technological challenges and solutions, provides an overview on present operating x-ray FELs, and gives examples for medical applications
Anomalous signal from S atoms in protein crystallographic data from an X-ray free-electron laser
X-ray free-electron lasers (FELs) enable crystallographic data collection using extremely bright femtosecond pulses from microscopic crystals beyond the limitations of conventional radiation damage. This diffraction-before-destruction approach requires a new crystal for each FEL shot and, since the crystals cannot be rotated during the X-ray pulse, data collection requires averaging over many different crystals and a Monte Carlo integration of the diffraction intensities, making the accurate determination of structure factors challenging. To investigate whether sufficient accuracy can be attained for the measurement of anomalous signal, a large data set was collected from lysozyme microcrystals at the newly established `multi-purpose spectroscopy/imaging instrument' of the SPring-8 Ă
ngstrom Compact Free-Electron Laser (SACLA) at RIKEN Harima. Anomalous difference density maps calculated from these data demonstrate that serial femtosecond crystallography using a free-electron laser is sufficiently accurate to measure even the very weak anomalous signal of naturally occurring S atoms in a protein at a photon energy of 7.3â
keV
Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography
Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 angstrom resolution and determine its serial femtosecond crystallography structure to 3.5 angstrom resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure
Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
Xâray freeâelectron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effect