9 research outputs found

    Background reduction at the KATRIN experiment by the shifted analysing plane configuration

    Get PDF
    The KATRIN experiment aims at measuring the electron neutrino mass with a sensitivity of 0.2 eV/c2^2 after 5 years of data taking. Recently a new upper limit for the neutrino mass of 0.8 eV/c2^2 (90% CL) was obtained. To reach the design sensitivity, a reduction of the background rate by one order of magnitude is required. The shifted analysing plane (SAP) configuration exploits a specific shaping of the electric and magnetic fields in the KATRIN main spectrometer to reduce the spectrometer background by a factor of two. We discuss the general idea of the SAP configuration and describe the main features of this novel measurement mode

    Maturation of active zone assembly by Drosophila Bruchpilot

    Get PDF
    Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains

    Background reduction by the inner wire electrode and set-up of the condensed krypton source at the neutrino mass experiment KATRIN

    Full text link
    KATRIN strebt eine Bestimmung der Neutrinomasse durch Vermessung des Tritium-Beta-Spektrums mit einer SensitivitĂ€t von 0.2 eV an. Das Experiment besteht aus einer Tritiumquelle, einer Transportstrecke, zwei Spektrometern des MAC-E Typs, in denen die Zerfallselektronen energetisch gefiltert werden, und einem Detektor. Das Hauptspektrometer ist mit einem doppellagigem Drahtelektrodensystem zur UntergrundunterdĂŒckung ausgestattet. Aufgrund von Kontaktproblemen der Drahtlagen wurden in der Arbeit die Untergrundcharakteristika bei ein- und zweilagigem Betrieb untersucht. Zudem wurde die VolumenabhĂ€ngigkeit des Untergrunds untersucht und das Energiespektrum der Untergrundelektronen bestimmt. Desweiteren wird eine Krypton-Kalibrationsquelle (CKrS) vorgestellt, mit der die Transmissionseigenschaften des Experiments untersucht werden können. HierfĂŒr wird der Aufbau und die Inbetriebnahme erörtert, sowie die Ergebnisse einer Messkampagne 2017 in Bezug auf ihre LeistungsfĂ€higkeit vorgestellt

    Background reduction at the KATRIN experiment by the shifted analysing plane configuration

    No full text
    The KATRIN experiment aims at measuring the electron neutrino mass with a sensitivity of 0.2 eV/c2^2 after 5 years of data taking. Recently a new upper limit for the neutrino mass of 0.8 eV/c2^2 (90% CL) was obtained. To reach the design sensitivity, a reduction of the background rate by one order of magnitude is required. The shifted analysing plane (SAP) configuration exploits a specific shaping of the electric and magnetic fields in the KATRIN main spectrometer to reduce the spectrometer background by a factor of two. We discuss the general idea of the SAP configuration and describe the main features of this novel measurement mode

    First operation of the KATRIN experiment with tritium

    Get PDF
    The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of ÎČ ÎČ -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 0.2 eV (90% 90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy.

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment's windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium-one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10-3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, ΔT, is derived with precision of <10-3 and trueness of <3 × 10-3, being within and surpassing the actual requirements for KATRIN, respectively

    Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy

    No full text
    corecore