2,005 research outputs found

    Generalized parton correlation functions for a spin-1/2 hadron

    Full text link
    The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.Comment: 41 pages, 3 figures; v2: added referenc

    Dsη,ηD_s \rightarrow \eta, \eta' semileptonic decay form factors with disconnected quark loop contributions

    Full text link
    We calculate for the first time the form factors of the semi-leptonic decays of the DsD_s meson to η\eta and η\eta^\prime using lattice techniques. As a by-product of the calculation we obtain the masses and leading distribution amplitudes of the η\eta and η\eta^\prime mesons. We use Nf=2+1N_f=2+1 non-perturbatively improved clover fermions on configurations with a lattice spacing a0.075a\sim 0.075 fm. We are able to obtain clear signals for relevant matrix elements, using several noise reduction techniques, both for the connected and disconnected contributions. This includes a new method for reducing the variance of pseudoscalar disconnected two-point functions. At zero momentum transfer, we obtain for the scalar form factors, f0Dsη=0.564(11)|f_0^{D_s\to \eta}|=0.564(11) and f0Dsη=0.437(18)|f_0^{D_s\to \eta'}|=0.437(18) at Mπ470MeVM_\pi\approx 470\, {\rm MeV}, as well as f0Dsη=0.542(13)|f_0^{D_s\to \eta}|=0.542(13) and f0Dsη=0.404(25)|f_0^{D_s\to \eta'}|=0.404(25) at Mπ370MeVM_\pi\approx 370\, {\rm MeV}, where the errors are statistical only.Comment: 26 pages 28 figures; v2: a phenomenological analysis added, title changed slightly, minor typos correcte

    Electronic conduction in multi-walled carbon nanotubes: Role of intershell coupling and incommensurability

    Full text link
    Geometry incommensurability between weakly coupled shells in multi-walled carbon nanotubes is shown to be the origin of unconventional electronic conduction mechanism, power-law scaling of the conductance, and remarkable magnetotransport and low temperature dependent conductivity when the dephasing mechanism is dominated by weak electron-electron coupling

    Experimental comparison of photon versus particle computed tomography to predict tissue relative stopping powers

    Get PDF
    Purpose: Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples. Methods: We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90urn:x-wiley:00942405:media:mp15283:mp15283-math-00010.06 to 1.78 urn:x-wiley:00942405:media:mp15283:mp15283-math-00020.05. Samples were packed and sealed into 3D-printed cylinders (urn:x-wiley:00942405:media:mp15283:mp15283-math-0003 cm, urn:x-wiley:00942405:media:mp15283:mp15283-math-0004 cm) and inserted into an in-house designed cylindrical polymethyl methacrylate (PMMA) phantom (urn:x-wiley:00942405:media:mp15283:mp15283-math-0005 cm, urn:x-wiley:00942405:media:mp15283:mp15283-math-0006 cm). We scanned the phantom in a commercial SECT and DECT (120 kV; 100 and 140 kV/Sn (tin-filtered)); and acquired pCT and HeCT (urn:x-wiley:00942405:media:mp15283:mp15283-math-0007 MeV/u, 2urn:x-wiley:00942405:media:mp15283:mp15283-math-0008 steps, urn:x-wiley:00942405:media:mp15283:mp15283-math-0009 (p)/urn:x-wiley:00942405:media:mp15283:mp15283-math-0010 (He) particles/projection) with a particle imaging prototype. RSP maps were calculated from SECT/DECT using stoichiometric methods and from pCT/HeCT using the DROP-TVS algorithm. We estimated the average RSP of each tissue per modality in cylindrical volumes of interest and compared it to ground truth RSP taken from peak-detection measurements. Results: Throughout all samples, we observe the following root-mean-squared RSP prediction errors urn:x-wiley:00942405:media:mp15283:mp15283-math-0011 combined uncertainty from reference measurement and imaging: SECT 3.10urn:x-wiley:00942405:media:mp15283:mp15283-math-00122.88%, DECT 0.75urn:x-wiley:00942405:media:mp15283:mp15283-math-00132.80%, pCT 1.19urn:x-wiley:00942405:media:mp15283:mp15283-math-0014 2.81%, and HeCT 0.78urn:x-wiley:00942405:media:mp15283:mp15283-math-00152.81%. The largest mean errors urn:x-wiley:00942405:media:mp15283:mp15283-math-0016 combined uncertainty per modality are SECT 8.22 urn:x-wiley:00942405:media:mp15283:mp15283-math-00172.79% in cortical bone, DECT 1.74urn:x-wiley:00942405:media:mp15283:mp15283-math-00182.00% in back fat, pCT 1.80 urn:x-wiley:00942405:media:mp15283:mp15283-math-00194.27% in bone marrow, and HeCT 1.37urn:x-wiley:00942405:media:mp15283:mp15283-math-00204.25% in bone marrow. Ring artifacts were observed in both pCT and HeCT reconstructions, imposing a systematic shift to predicted RSPs. Conclusion: Comparing state-of-the-art SECT/DECT technology and a pCT/HeCT prototype, DECT provided the most accurate RSP prediction, closely followed by particle imaging. The novel modalities pCT and HeCT have the potential to further improve on RSP accuracies with work focusing on the origin and correction of ring artifacts. Future work will study accuracy of proton treatment plans using RSP maps from investigated imaging modalities

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "κorg" parameter, and f44 was determined and is given by κorg=2.2×f44−0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Relating hygroscopicity and composition of organic aerosol particulate matter

    Get PDF
    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO2+ for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or "ϰorg" parameter, and f44 was determined and is given by ϰorg = 2.2 × f44 − 0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since f44 is correlated with the photochemical age of an air mass

    Application of anti-diagonal averaging in response reconstruction

    Get PDF
    Response reconstruction is used to obtain accurate replication of vehicle structural responses of field recorded measurements in a laboratory environment, a crucial step in the process of Accelerated Destructive Testing (ADA). Response Reconstruction is cast as an inverse problem whereby an input signal is inferred to generate the desired outputs of a system. By casting the problem as an inverse problem we veer away from the familiarity of symmetry in physical systems since multiple inputs may generate the same output. We differ in our approach from standard force reconstruction problems in that the optimisation goal is the recreated output of the system. This alleviates the need for highly accurate inputs. We focus on offline non-causal linear regression methods to obtain input signals. A new windowing method called AntiDiagonal Averaging (ADA) is proposed to improve the regression techniques’ performance. ADA introduces overlaps within the predicted time signal windows and averages them. The newly proposed method is tested on a numerical quarter car model and shown to accurately reproduce the system’s outputs, which outperform related Finite Impulse Response (FIR) methods. In the nonlinear configuration of the numerical quarter car, ADA achieved a recreated output Mean Fit Function Error (MFFE) score of 0.40% compared to the next best performing FIR method, which generated a score of 4.89%. Similar performance was shown for the linear case.https://www.mdpi.com/journal/symmetrydm2022Mechanical and Aeronautical Engineerin

    Saturn's icy satellites and rings investigated by Cassini - VIMS. III. Radial compositional variability

    Full text link
    In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturn's icy satellites and rings. After having analyzed the satellites' spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites' hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturn's system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus' leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapke's theory to retrieve the best spectral fits to Saturn's inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).Comment: 44 pages, 27 figures, 7 tables. Submitted to Icaru

    An improved quantitative measure of the tendency for volcanic ash plumes to form in water: implications for the deposition of marine ash beds

    No full text
    Laboratory experiments and numerical simulations have shown that volcanic ash particles immersed in water can either settle slowly and individually, or rapidly and collectively as particle-laden plumes. The ratio of timescales for individual and collective settling, in the form of analytical expressions, provides a dimensionless quantitative measure of the tendency for such plumes to grow and persist which has important implications for determining particle residence times and deposition rates. However, existing measures in the literature assume that collective settling obeys Stokes' law and is therefore controlled by the balance between gravitational forces and viscous drag, despite plume development actually being controlled by the balance between gravitational forces and inertial drag even in the absence of turbulence during early times. This paper presents a new measure for plume onset which takes into account the inertial drag-controlled (rather than viscous drag-controlled) nature of plume growth and descent. A parameter study comprising a set of numerical simulations of small-scale volcanic ash particle settling experiments highlights the effectiveness of the new measure and, by comparison with an existing measure in the literature, also demonstrates that the timescale of collective settling is grossly under-estimated when assuming that plume development is slowed by viscous drag. Furthermore, the formulation of the new measure means that the tendency for plumes to form can be estimated from the thickness and concentration of the final deposit; the magnitude and duration of particle flux across the water's surface do not need to be known. The measure therefore permits the residence times of particles in a large body of water to be more accurately and practically determined, and allows the improved interpretation of layers of volcaniclastic material deposited at the seabed
    corecore