12 research outputs found

    Parental cooperation in a changing climate: fluctuating environments predict shifts in care division

    Get PDF
    Aim: Parental care improves the survival of offspring and therefore has a major impact on reproductive success. It is increasingly recognized that coordinated biparental care is necessary to ensure the survival of offspring in hostile environments, but little is known about the influence of environmental fluctuations on parental cooperation. Assessing the impacts of environmental stochasticity, however, is essential for understanding how populations will respond to climate change and the associated increasing frequencies of extreme weather events. Here we investigate the influence of environmental stochasticity on biparental incubation in a cosmopolitan ground-nesting avian genus. Location: Global. Methods: We assembled data on biparental care in 36 plover populations (Charadrius spp.) from six continents, collected between 1981 and 2012. Using a space-for-time approach we investigate how average temperature, temperature stochasticity (i.e. year-to-year variation) and seasonal temperature variation during the breeding season influence parental cooperation during incubation. Results: We show that both average ambient temperature and its fluctuations influence parental cooperation during incubation. Male care relative to female care increases with both mean ambient temperature and temperature stochasticity. Local climatic conditions explain within-species population differences in parental cooperation, probably reflecting phenotypic plasticity of behaviour. Main conclusions: The degree of flexibility in parental cooperation is likely to mediate the impacts of climate change on the demography and reproductive behaviour of wild animal populations.</p

    Mating System and Reproductive Success of a Small Population of Polygamous Snowy Plovers

    No full text
    Volume: 98Start Page: 15End Page: 3

    Effects of drought on the abundance and distribution of non-breeding shorebirds in central California, USA.

    No full text
    Conservation of migratory species requires anticipating the potential impacts of extreme climatic events, such as extreme drought. During drought, reduced habitat availability for shorebirds creates the potential for changes in their abundance and distribution, in part because many species are highly mobile and rely on networks of interior and coastal habitats. Understanding how shorebirds responded to a recent drought cycle that peaked from 2013 to 2015 in central California, USA, will help optimize management of wetlands and fresh water for wildlife. In the Central Valley, a vast interior region that is characterized by a mosaic of wetlands and agricultural lands, we found 22% and 29% decreases in the annual abundance of shorebirds during periods of 3-year drought (2013-2015) and 2-year extreme drought (2014-2015), respectively, when compared to non-drought years. Lower abundance of shorebirds coincided with significant decreases in the mean proportion flooded of survey units (7% and 9%, respectively) that were reliant on fresh water. Drought was associated with lower abundance within both the interior Central Valley and coastal San Francisco Bay for greater and lesser yellowlegs (Tringa melanoleuca and T. flavipes) and long- and short-billed dowitchers (Limnodromus scolopaceus and L. griseus). Only dunlins (Calidris alpina) had patterns of abundance that suggested substantial shifts in distribution between the Central Valley and coastal regions of San Francisco Bay and Point Reyes. Our results indicate that drought has the potential to reduce, at least temporally, shorebird populations and flooded habitat in the Central Valley, and the ability to respond to drought by taking advantage of nearby coastal habitats may limit the long-term effects of drought on some species. Successful conservation strategies must balance the impacts of reduced habitat availability at interior sites with the ability of some migratory shorebirds to adapt rapidly to shifting distributions of resources
    corecore