139 research outputs found

    Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73.

    Get PDF
    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology

    Retrospective comparison between a regular and a split-dose protocol of 5-fluorouracil, cisplatin, and mitoxantrone for the treatment of far advanced hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with advanced hepatocellular carcinoma (HCC), combination chemotherapy using 5- fluorouracil, cisplatin, and mitoxantrone (FMP) could achieve a response rate > 20%, but the beneficial effect was compromised by formidable adverse events. Chemotherapy given in a split-dose manner was associated with reduced toxicities. In this retrospective study, we compared the efficacies and side effects between a regular and a split-dose FMP protocol approved in our medical center.</p> <p>Methods</p> <p>From 2005 to 2008, the clinical data of 84 patients with far advanced HCC, who had either main portal vein thrombosis and/or extrahepatic metastasis, were reviewed. Of them, 65 were treated by either regular (n = 27) or split-dose (n = 38) FMP and had completed at least one therapeutic course. The remaining 19 patients were untreated. Clinical parameters, therapeutic responses, survivals and adverse events were compared.</p> <p>Results</p> <p>The median overall survival was 6.0, 5.2, and 1.5 months, respectively, in patients receiving regular FMP, split-dose FMP, and no treatment (regular versus split-dose group, P = 0.447; regular or split-dose versus untreated group; P < 0.0001). Patients receiving split-dose treatment had a significantly lower risk of grade 3/4 neutropenia (51.9 versus 10.5%, P = 0.0005). When the two treated groups were combined, the median overall survival was 10.6 and 3.8 months respectively for patients achieving disease control and progressive disease (P < 0.001). Cox proportion hazard model identified Child-Pugh stage B (hazard ratio [HR], 2.216; P = 0.006), presence of extrahepatic metastasis (HR, 0.574; P = 0.048), and achievement of disease control (HR, 0.228; P < 0.001) as independent factors associated with overall survival. Logistic regression analysis revealed that anti-hepatitis C virus antibody (odds ratio [OR], 9.219; P = 0.002) tumor size (OR, 0.816; P = 0.036), and previous anti-cancer therapy (OR, 0.195; P = 0.017) were significantly associated with successful disease control.</p> <p>Conclusions</p> <p>Comparable overall survival was observed between patients receiving regular and split-dose FMP therapies. Patients receiving split-dose therapy had a significantly lower risk of grade 3/4 neutropenia. Positive anti-hepatitis C virus antibody, smaller tumor size, and absence of previous anti-cancer therapy were independent predictors for successful disease control.</p

    Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Get PDF
    The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC) vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations

    Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction.</p> <p>Results</p> <p>We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion.</p> <p>Conclusions</p> <p>This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological amounts of folate (2 μM) routinely used in tissue culture. In addition, we elucidate for the first time the contribution of these aspects to consequent phenotype changes in epithelial cells. These results provide a strong rationale for studying the effects of folate manipulation on the prostate <it>in vivo</it>, where cells might be more sensitive to changes in folate status resulting from folate supplementation or antifolate therapeutic approaches.</p

    Continuous low-dose cyclophosphamide and methotrexate combined with celecoxib for patients with advanced cancer

    Get PDF
    BACKGROUND: Combined therapy of metronomic cyclophosphamide, methotrexate and high-dose celecoxib targeting angiogenesis was used in a phase II trial. METHODS: Patients with advanced cancer received oral cyclophosphamide 50 mg o.d., celecoxib 400 mg b.d. and methotrexate 2.5 mg b.d. for two consecutive days each week. Response was determined every 8 weeks; toxicity was evaluated according to CTC version 2.0. Plasma markers of inflammation, coagulation and angiogenesis were measured. RESULTS: Sixty-seven of 69 patients were evaluable for response. Twenty-three patients had stable disease (SD) after 8 weeks, but there were no objective responses to therapy. Median time to progression was 57 days. There was a low incidence of toxicities. Among plasma markers, levels of tissue factor were higher in the SD group of patients at baseline, and levels of both angiopoietin-1 and matrix metalloproteinase-9 increased in the progressive disease group only. There were no changes in other plasma markers. CONCLUSION: This metronomic approach has negligible activity in advanced cancer albeit with minimal toxicity. Analysis of plasma markers indicates minimal effects on endothelium in this trial. These data for this particular regimen do not support basic tenets of metronomic chemotherapy, such as the ability to overcome resistant tumours by targeting the endothelium

    A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients

    Get PDF
    The pharmacokinetics (PK) and pharmacodynamics (PD) of metronomic irinotecan have not been studied in cancer patients. The aim of the study is to investigate the PK/PD profile of irinotecan/SN-38 administered by metronomic schedule. Twenty chemotherapy-refractory or chemotherapy-resistant patients with metastatic colorectal carcinoma were enrolled. Irinotecan was infused continuously as follows: irinotecan 1.4 mg m−2 day−1 (n=7), 2.8 mg m−2 day−1 (n=5) and 4.2 mg m−2 day−1 (n=8). Drug levels were examined by HPLC, whereas ELISAs and real-time RT-PCR were used, respectively, for the measurement of plasma levels and gene expression in peripheral blood mononuclear cells of vascular endothelial growth factor/thrombospondin-1. Pharmacokinetic analysis demonstrated that the steady-state levels (Css) of SN-38 were between 1 and 3.3 ng ml−1. From a PD point of view, higher thrombospondin-1 (TSP-1) plasma levels (153.4±30.1 and 130.4±9.2% at day 49 vs pretreatment values at 1.4 and 2.8 mg m−2 day−1 dose levels, respectively) and increased gene expression in PBMC were found during the metronomic irinotecan infusion, especially at the lower doses. Four patients (20%) obtained a stable disease (median 3.9 months) despite progressing during previous standard irinotecan schedule. Toxicities >grade 1 were not observed. Metronomic irinotecan administration is very well tolerated and induces an increase of gene expression and plasma concentration of TSP-1 at low plasma SN-38 concentrations

    Characterization of the model for experimental testicular teratoma in 129/SvJ-mice

    Get PDF
    An animal model of experimental testicular teratoma has been established to study how a teratoma affects the host testis and how the host testis reacts against the teratoma. 129/SvJ-mice were used as experimental animals. To induce the experimental testicular teratoma, male gonadal ridges from 12-day-old 129/SvJ-mouse fetuses were grafted into the testes of adult mice for 1-12 weeks. The developing tumour was analysed by light and electron microscopy and by immunocytochemical localization of transcription factors SOX9 and c-kit, glial fibrillary acidic protein (GFAP) and type IV collagen. Testicular teratoma was observed in 36 out of 124 testes with implanted fetal gonadal ridges (frequency 29%). One spontaneous testicular teratoma was observed in this material from 70 male mice (1.5%). One week after implantation intracordal clusters of cells were seen in embryonic testicular cords of the graft as the first sign of testicular teratomas. Four weeks after implantation the embryonic testicular cords had totally disappeared from grafts with teratomas, and the tumour tissue had enlarged the testis and invaded the interstitium of the host testis. It consisted of solitary pieces of immature cartilage as well as of glial cells and of primitive neuroepithelium. Six to eight weeks after implantation the tumour tissue had expanded so that the enlarged testis could be detected by macroscopic enlargement of the scrotum. The testicular tissue of the host had practically disappeared, and only solitary disrupted seminiferous tubules of the host were seen surrounding the teratoma. Neuroepithelial structures of some teratomas cultured for 8 weeks had cells with a granular nucleus as a sign of obvious apoptosis. Eleven to 12 weeks after implantation the growth of the teratoma had stopped, and the histology corresponded to that of a mature cystic teratoma. GFAP, SOX9 and type IV collagen were strongly positive in some parts of the tumours cultured for 4 and 8 weeks, while only occasional c-kit-positive areas were observed in tumours cultured for 8 weeks. As conclusions: (1) the metastasizing capacity of the experimental testicular teratoma is very low during 12 weeks, but the behaviour of the tumour in the testicular tissue of the graft is invasive; (2) the growth of experimental testicular teratomas cease 6-8 weeks after implantation of the fetal gonadal ridges with the obvious apoptosis of the immature tissue components; (3) the model of experimental testicular teratoma in the mouse is suitable for studying how the teratoma affects the host testis and how the host testis reacts to teratoma

    Methyl-donor depletion of head and neck cancer cells in vitro establishes a less aggressive tumour cell phenotype

    Get PDF
    PURPOSE: DNA methylation plays a fundamental role in the epigenetic control of carcinogenesis and is, in part, influenced by the availability of methyl donors obtained from the diet. In this study, we developed an in-vitro model to investigate whether methyl donor depletion affects the phenotype and gene expression in head and neck squamous cell carcinoma (HNSCC) cells. METHODS: HNSCC cell lines (UD-SCC2 and UPCI-SCC72) were cultured in medium deficient in methionine, folate, and choline or methyl donor complete medium. Cell doubling-time, proliferation, migration, and apoptosis were analysed. The effects of methyl donor depletion on enzymes controlling DNA methylation and the pro-apoptotic factors death-associated protein kinase-1 (DAPK1) and p53 upregulated modulator of apoptosis (PUMA) were examined by quantitative-PCR or immunoblotting. RESULTS: HNSCC cells cultured in methyl donor deplete conditions showed significantly increased cell doubling times, reduced cell proliferation, impaired cell migration, and a dose-dependent increase in apoptosis when compared to cells cultured in complete medium. Methyl donor depletion significantly increased the gene expression of DNMT3a and TET-1, an effect that was reversed upon methyl donor repletion in UD-SCC2 cells. In addition, expression of DAPK1 and PUMA was increased in UD-SCC2 cells cultured in methyl donor deplete compared to complete medium, possibly explaining the observed increase in apoptosis in these cells. CONCLUSION: Taken together, these data show that depleting HNSCC cells of methyl donors reduces the growth and mobility of HNSCC cells, while increasing rates of apoptosis, suggesting that a methyl donor depleted diet may significantly affect the growth of established HNSCC

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers
    • …
    corecore