19 research outputs found

    Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappa B-driven inflammation and cardiovascular risk

    Get PDF
    Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-kappa B-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-kappa B regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-kappa B. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-kappa B through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-kappa B signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.Peer reviewe

    Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior

    Get PDF
    Author summary Genetic and environmental factors contribute to the etiology of psychiatric diseases but the underlying mechanisms are poorly understood. Chronic psychosocial stress is a well-known risk factor for anxiety disorders. To identify biological pathways involved in psychosocial stress-induced anxiety and resilience to it, we used a well-characterized mouse model of chronic social defeat stress (CSDS) in two inbred mouse strains, C57BL/6NCrl (B6) and DBA/2NCrl (D2), which differ in their susceptibility to stress. We focused on the bed nucleus of the stria terminalis, a key brain region behind stress-response and anxiety, and carried out genome-wide analysis of mRNA, and miRNA expression, and protein abundance. Bioinformatic integration of these data supported differences in mitochondrial pathways as a major stress response. To translate these findings to human anxiety, we investigated blood cell gene expression in mice and in panic disorder patients exposed to fearful situations and experiencing panic attacks. Concurring with our brain findings, expression of mitochondrial pathways was also affected in mouse and human blood cells, suggesting that the observed stress response mechanisms are evolutionarily conserved. Therefore, chronic stress may critically affect cellular energy metabolism, a finding that may offer new targets for therapeutic interventions of stress-related diseases.Peer reviewe

    ‘Everyone thought I was a very very bad person… no one want to know you like the nurses and doctors’:using focus groups to elicit the views of adults with learning disability who use challenging behaviour services

    Get PDF
    and Tables S1–S3. (PDF 3090 kb

    Personalized medicine for patients with COPD: where are we?

    No full text
    Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD

    Analisis del proceso de transferencia de tecnologia en tres fincas de ganado de doble proposito en Moroceli, Honduras

    No full text
    87 p.Es una investigación social que analiza el cambio de comportamiento de tres estudios de caso en el proceso de transferencia de tecnología para ganado de doble propósito con la meta mantener la producción de estos hatos en verano en Moroceli, Honduras. La metodología usada se rigió por los pasos de la transferencia: diagnóstico, realizado en un estudio anterior, la determinación de las opciones técnicas y difusión. Para lograr esta se realizó una encuesta semi estructurada, un taller, capacitaciones y visitas de campo. E n el taller se trabajó con el problema de la deficiente alimentación por ser el más sentido por e l productor, se analizaron las causas y efectos de este problema y las posibles soluciones. Se presentaron algunas prácticas de alimentación más adecuadas, teniendo en cuenta los recursos y analizando cada alternativa desde el punto de vista económico y operacional

    Correction to: Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling

    No full text
    Upon publication of the original article [1] it was highlighted by the authors that a transposition error affected Additional file 1, causing the misplacement of several columns and rendering the table difficult to read. This transposition does not influence any of the results nor analyses presented in the paper and has since been formally noted in this correction article; the corrected file is available here as an Additional File. The publisher apologizes for this error

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning.

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe "DeepWAS", a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS
    corecore