147 research outputs found

    Rapid Neutrophil Response Controls Fast-Replicating Intracellular Bacteria but Not Slow-Replicating Mycobacterium tuberculosis

    Get PDF
    Being one of the first cells to invade the site of infection, neutrophils play an important role in the control of various bacterial and viral infections. In the present work, the contribution of neutrophils to the control of infection with different intracellular bacteria was investigated. Mice were treated with the neutrophil-depleting monoclonal antibody RB6-8C5, and the time course of infection in treated and untreated mice was compared by using intracellular bacterial species and strains varying in virulence and replication rate. The results indicate that neutrophils are crucial for the control of fast-replicating intracellular bacteria, whereas early neutrophil effector mechanisms are dispensable for the control of the slow-replicating Mycobacterium tuberculosi

    The Proteasome System in Infection: Impact of β5 and LMP7 on Composition, Maturation and Quantity of Active Proteasome Complexes

    Get PDF
    Proteasomes are the major enzyme complexes for non-lysosomal protein degradation in eukaryotic cells. Mammals express two sets of catalytic subunits: the constitutive subunits β1, β2 and β5 and the immunosubunits LMP2 (β1i), MECL-1 (β2i) and LMP7 (β5i). The LMP7-propeptide (proLMP7) is required for optimal maturation of LMP2/MECL-1-containing precursors to mature immunoproteasomes, but can also mediate efficient integration into mixed proteasomes containing β1 and β2. In contrast, the β5-propeptide (proβ5) has been suggested to promote preferential integration into β1/β2-containing precursors, consequently favouring the formation of constitutive proteasomes. Here, we show that proβ5 predominantly promotes integration into LMP2/MECL-1-containing precursors in IFNγ-stimulated, LMP7-deficient cells and infected LMP7-deficient mice. This demonstrates that proβ5 does not direct preferential integration into β1/β2-containing precursors, but instead promotes the formation of mixed LMP2/MECL-1/β5 proteasomes under inflammatory conditions. Moreover, the propeptides substantially differ in their capacity to promote proteasome maturation, with proLMP7 showing a significantly higher chaperone activity as compared to proβ5. Increased efficiency of proteasome maturation mediated by proLMP7 is required for optimal MHC class I cell surface expression and is equally important as the catalytic activity of immunoproteasomes. Intriguingly, induction of LMP7 by infection not only results in rapid exchange of constitutive by immunosubunits, as previously suggested, but also increases the total proteasome abundance within the infected tissue. Hence our data identify a novel LMP7-dependend mechanism to enhance the activity of the proteasome system in infection, which is based on the high chaperone activity of proLMP7 and relies on accelerated maturation of active proteasome complexes

    Prevention of colitis-associated cancer by selective targeting of immunoproteasome subunit LMP7

    Get PDF
    Chronic inflammation is a well-known risk factor in development of intestinal tumorigenesis, although the exact mechanisms underlying development of colitis-associated cancer (CAC) still remain obscure. The activity and function of immunoproteasome has been extensively analyzed in the context of inflammation and infectious diseases. Here, we show that the proteasomal immunosubunit LMP7 plays an essential role in development of CAC. Mice devoid of LMP7 were resistant to chronic inflammation and formation of neoplasia, and developed virtually no tumors after AOM/DSS treatment. Our data reveal that LMP7 deficiency resulted in reduced expression of pro-tumorigenic chemokines CXCL1, CXCL2 and CXCL3 as well as adhesion molecule VCAM-1. As a consequence, an impaired recruitment and activity of tumor-infiltrating leukocytes resulting in decreased secretion of cytokines IL-6 and TNF-α was observed. Further, the deletion or pharmacological inhibition of LMP7 and consequent blockade of NF-κB abrogated the production of IL-17A, which possesses a strong carcinogenic activity in the gut. Moreover, in vivo administration of the selective LMP7 inhibitor ONX-0914 led to a marked reduction of tumor numbers in wild-type (WT) mice. Collectively, we identified the immunoproteasome as a crucial mediator of inflammation-driven neoplasia highlighting a novel potential therapeutic approach to limit colonic tumorigenesis

    Comparison of Different Serological Tests in Three Endemic Regions

    Get PDF
    Diagnostic tests for visceral leishmaniasis that are based on antigens of a single Leishmania strain can have low diagnostic performance in regions where heterologous parasites predominate. The aim of this study was to investigate and compare the performance of five serological tests, based on different Leishmania antigens, in three endemic countries for visceral leishmaniasis. A total number of 231 sera of symptomatic and asymptomatic cases and controls from three endemic regions of visceral leishmaniasis in East Sudan, North India and South France were evaluated by following serological tests: rKLO8- and rK39 ELISA, DAT (ITMA-DAT) and two rapid tests of rK39 (IT LEISH) and rKE16 (Signal-KA). Overall, rKLO8- and rK39 ELISA were most sensitive in immunocompetent patients from all endemic regions (96–100%) and the sensitivity was reduced to 81.8% in HIV co-infected patients from France. Sera of patients from India demonstrated significantly higher antibody responses to rKLO8 and rK39 compared with sera from Sudan (p<0.0001) and France (p<0.0037). Further, some Indian and Sudanese patients reacted better with rKLO8 than rK39. Sensitivity of DAT (ITMA-DAT) was high in Sudan (94%) and India (92.3%) but low in France being 88.5% and 54.5% for VL and VL/HIV patients, respectively. In contrast, rapid tests displayed high sensitivity only in patients from India (96.2%) but not Sudan (64–88%) and France (73.1–88.5% and 63.6–81.8% in VL and VL/HIV patients, respectively). While the sensitivity varied, all tests showed high specificity in Sudan (96.7–100%) and India (96.6%).Heterogeneity of Leishmania parasites which is common in many endemic regions complicates the diagnosis of visceral leishmaniasis. Therefore, tests based on homologous Leishmania antigens are required for particular endemic regions to detect cases which are difficult to be diagnosed with currently available tests

    Link between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity

    Get PDF
    Adoptive transfer of cross-reactive HSP60-specific CD8+ T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8+ T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demonstrate that 20S proteasomes of different organs display a characteristic composition of α and β chain subunits and produce distinct peptide fragments with respect to both quality and quantity. Digests of HSP60 polypeptides by 20S proteasomes show most efficient generation of the pathology related CD8+ T cell epitope in the small intestine. Further, we demonstrate that the organ-specific potential to produce defined T cell epitopes reflects quantities that are relevant for cytotoxic T lymphocyte recognition. We propose tissue-specific antigen processing by 20S proteasomes as a potential mechanism to control organ-specific immune responses

    Guidance for the collection of case report form variables to assess safety in clinical trials of vaccines in pregnancy.

    Get PDF
    Vaccination in pregnancy is an effective strategy to prevent serious infections in mothers and their infants. Safety of this strategy is of principal importance to all stakeholders. As the number of studies assessing safety of vaccines in pregnancy increases, the need to ensure consistent collection and reporting of critical data to allow comparisons and data pooling becomes more important. The Global Alignment of Immunization Safety Assessment in Pregnancy (GAIA) project aims to improve data collection and create a shared understanding of maternal, fetal and neonatal outcomes in order to progress the global agenda for vaccination in pregnancy. The guidance in this document has been developed to harmonize the data collected in case report forms used for safety monitoring in clinical trials of vaccination in pregnant women. Data to be collected is prioritized to allow applicability in diverse research settings, including low and middle-income countries. Standardized data will enable the research community to have a common base upon which to conduct meta-analyses, strengthening the applicability of outcomes to different settings

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    The Impact of Mercenaries and Private Military and Security Companies on Civil War Severity between 1946 and 2002

    Get PDF
    Research has long abandoned the view that only states wage war. On the contrary, civil war research has produced an impressive body of literature on violent non-state actors. Still, a particular group of actors—mercenaries—has been widely neglected so far, although they have participated in numerous conflicts in the second half of the twentieth century. Whether their presence aggravated or improved the situation is a matter of dispute. Some believe that the additional military capabilities provided by mercenaries help to end civil wars quickly without increased bloodshed, while others deem mercenaries greedy and bloodthirsty combatants who contribute to making civil wars more brutal, while a third opinion differentiates between different types of mercenaries. This article tests the impact of mercenaries on civil war severity. The evidence indicates that the presence of both mercenaries and private military and security contractors increases its severity

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    corecore