911 research outputs found

    Non-Relativistic Gravitation: From Newton to Einstein and Back

    Full text link
    We present an improvement to the Classical Effective Theory approach to the non-relativistic or Post-Newtonian approximation of General Relativity. The "potential metric field" is decomposed through a temporal Kaluza-Klein ansatz into three NRG-fields: a scalar identified with the Newtonian potential, a 3-vector corresponding to the gravito-magnetic vector potential and a 3-tensor. The derivation of the Einstein-Infeld-Hoffmann Lagrangian simplifies such that each term corresponds to a single Feynman diagram providing a clear physical interpretation. Spin interactions are dominated by the exchange of the gravito-magnetic field. Leading correction diagrams corresponding to the 3PN correction to the spin-spin interaction and the 2.5PN correction to the spin-orbit interaction are presented.Comment: 10 pages, 3 figures. v2: published version. v3: Added a computation of Einstein-Infeld-Hoffmann in higher dimensions within our improved ClEFT which partially confirms and partially corrects a previous computation. See notes added at end of introductio

    High-accuracy simulations of highly spinning binary neutron star systems

    Get PDF
    With an increasing number of expected gravitational-wave detections of binary neutron star mergers, it is essential that gravitational-wave models employed for the analysis of observational data are able to describe generic compact binary systems. This includes systems in which the individual neutron stars are millisecond pulsars for which spin effects become essential. In this work, we perform numerical-relativity simulations of binary neutron stars with aligned and anti-aligned spins within a range of dimensionless spins of χ[0.28,0.58]\chi \sim [-0.28,0.58]. The simulations are performed with multiple resolutions, show a clear convergence order and, consequently, can be used to test existing waveform approximants. We find that for very high spins gravitational-wave models that have been employed for the interpretation of GW170817 and GW190425 are not capable of describing our numerical-relativity dataset. We verify through a full parameter estimation study in which clear biases in the estimate of the tidal deformability and effective spin are present. We hope that in preparation of the next gravitational-wave observing run of the Advanced LIGO and Advanced Virgo detectors our new set of numerical-relativity data can be used to support future developments of new gravitational-wave models

    Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Get PDF
    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauretania. The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (−629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (−249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production a significant different source should be considered. The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors

    Maternal Influenza Immunization and Reduced Likelihood of Prematurity and Small for Gestational Age Births: A Retrospective Cohort Study

    Get PDF
    In an analysis of surveillance data from the state of Georgia (US), Saad Omer and colleagues show an association between receipt of influenza vaccination among pregnant women and reduced risk of premature births

    Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance

    Get PDF
    In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP(+). Both NADPH and reduced Fd (Fd(red)) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fd(red) to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help “prime” the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription

    Microbial load of rinsed and unrinsed body cavities of roe deer (Capreolus capreolus) on the killing day and after cold storage: A preliminary investigation

    Get PDF
    Ensuring good game meat hygiene is a challenge in the hunting supply chain. Game carcasses can be soiled with intestinal contents or other substances from the environment due to hunting and handling practices. This soiling can increase the microbial load (ML) of the carcass and the resulting game meat. The aim of this study was to investigate whether rinsing of soiled and unsoiled body cavities with drinking water can reduce the ML of carcasses. Carcasses of 23 roe deer (Capreolus capreolus) were processed, either rinsed (n = 12) or unrinsed (n = 11), and examined for ML. Swab and muscle samples were taken from the carcasses at killing day and after 3 days of cold storage. The levels of ML were comparable for the rinsed and unrinsed roe deer carcasses with an increase of Pseudomonas spp. during cold storage. Initial ML seems to be independent of visible soiling. Other factors affecting the initial ML should be determined in future studies

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    Spin and quadrupole contributions to the motion of astrophysical binaries

    Full text link
    Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.Comment: 43 pages. Proceedings of the 524. WE-Heraeus-Seminar "Equations of Motion in Relativistic Gravity". v2: fixed reference. v3: corrected typos in eqs. (1), (57), (85

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat
    corecore