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Abstract  

In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) 

transfers electrons from ferredoxin (Fd) to NADP+. Both NADPH and reduced Fd (Fdred), are 

required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is 

therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. 

A correlation between FNR content and tolerance to oxidative stress is well established, 

although the precise mechanism remains unclear. We investigated the impact of altered FNR 

content and localization on electron transport and superoxide radical evolution in isolated 

thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress 

markers and tolerance to high light in planta. Our data indicate that the ratio of Fdred to FNR is 

critical, with either too much or too little FNR potentially leading to increased superoxide 

production, and perception of oxidative stress at the level of gene transcription. In FNR 

overexpressing plants, which show more reduced NADP(H) and glutathione pools, improved 

tolerance to high-light stress indicates that disturbance of chloroplast redox poise and 

increased free radical generation may help “prime” the plant and induce protective 

mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized 

relative to the wt, and the photoprotective effect is absent despite perception of oxidative 

stress at the level of gene transcription.  
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INTRODUCTION 

In photosynthetic electron transport (PET), electrons are accepted at photosystem I (PSI) by 

ferredoxin (Fd), before being transferred to the flavo-enzyme ferredoxin:NADP(H) 

oxidoreductase (FNR). PSI, Fd and FNR are reported to be present at a 1:5:3 ratio in spinach 

chloroplasts (Bohme, 1978). Very high control coefficients of FNR for photosynthesis of 0.94 

(at saturating light) and 0.7 (at limiting light) were calculated from a study on antisense tobacco 

plants with variable FNR concentrations (Hajirezaei et al., 2002). In higher plants, FNR 

enzymes have a dynamic relationship with the membrane, being recruited to various 

membrane complexes (Andersen et al., 1992; Jose Quiles and Cuello, 1998; Zhang et al., 

2001) including the two dedicated FNR-tethering proteins Tic62 (Benz et al., 2009) and TROL 

(Juric et al., 2009). Interaction of FNR with Tic62 and TROL is dependent on the LiR1 protein 

(Yang et al., 2016) and is regulated by pH (Alte et al., 2010; Lintala et al., 2014). The catalytic 

cycle of FNR is well described (Batie and Kamin, 1981, 1984, 1986; Carrillo and Ceccarelli, 

2003; Cassan et al., 2005), with two reduced Fd (Fdred) molecules binding in sequence to 

reduce the flavin cofactor before reduction of one NADP+. There is strong evidence for 

formation of a ternary complex (Martinez-Julvez et al., 2009).  

During light excitation, the PET chain is a rich source of reactive oxygen species (ROS). 

Superoxide radical (O2
•−) produced mainly at photosystem I (PSI) (Allen and Hall, 1974), and 

singlet oxygen (1O2) produced at photosystem II (PSII) (Telfer et al., 1994) are the dominant 

species evolved. Due to the damaging nature of ROS, very efficient scavenging (or 

antioxidant)- mechanisms exist in chloroplasts to prevent oxidative damage: 1O2 can be 

quenched by β-carotene, α-tocopherol or plastoquinone (Krieger-Liszkay et al., 2008), while 

in the water-water cycle (Asada, 1999) O2
•− is rapidly converted to H2O2 by superoxide 

dismutase (SOD) enzymes or plastoquinol (Mubarakshina and Ivanov, 2010). H2O2 can be 

converted to the highly damaging OH radical in the Fenton reaction by any of the multiple 

iron, copper or manganese centers in the thylakoid membrane or free ions (Snyrychova et al., 

2006). To prevent this, the chloroplast is rich in proteins that reductively convert H2O2 to H2O, 

such as peroxiredoxin, which can be reduced by either thioredoxin (Konig et al., 2002) or the 

NADPH dependent thioredoxin reductase C (NTRC) (Pulido et al., 2010), and other 

peroxidase enzymes, which use ascorbate as the electron donor (Mittler et al., 2004; Foyer 

and Noctor, 2011). Ascorbate can be directly regenerated using photosynthetic electrons via 

Fdred (Asada, 1999). Alternatively, dehydroascorbate reductase can reduce ascorbate using 

reduced glutathione (GSH). In the chloroplast, the oxidized glutathione (GSSG) is re-reduced 

by the glutathione reductase 2 (GR2) enzyme (Chew et al., 2003) using NADPH. It is now well 

established that retrograde signaling from the chloroplast controls gene expression and that 

oxidative species contribute to this signaling pathway (Mittler et al., 2004; Oelze et al., 2008; 
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Mubarakshina Borisova et al., 2012). A balance therefore exists between rapid removal of 

damaging oxidative species and maintenance of appropriate concentrations necessary to 

initiate signaling cascades. A simplified diagram showing the interconnections between FNR, 

the (Fdred / Fd + e-) and (NADPH / NADP+ + H+ + 2e-) redox couples and redox homeostasis 

is shown in Figure 1. 

In addition to its classical role in photosynthesis, there is a well-established connection 

between FNR and oxidative stress. This was first discovered in Escherichia coli, where the 

equivalent (though non-photosynthetic) protein was found to be a diaphorase of the O2
•− 

generator methyl viologen (MV), and was also identified as a member of the stress-responsive 

soxRS regulon (Liochev et al., 1994). Overexpression of FNR in E. coli caused an upregulated 

soxRS response, and mutants lacking FNR were found to be more susceptible to MV-

mediated oxidative stress, although the soxRS response was not affected (Krapp et al., 2002). 

Furthermore, it was discovered that higher plant FNR was capable of rescuing mutants of the 

E. coli gene (Krapp et al., 1997). It was suggested that FNR could act to balance the NADPH 

redox poise, thus affecting expression of the soxRS regulon. Alternative mechanisms by which 

FNR could promote tolerance to oxidative stress include potentially transferring electrons from 

NADPH to scavengers of ROS, acting in the repair of iron centers, or even by functioning as 

an anti-oxidant itself (Krapp et al., 1997; Krapp et al., 2002; Giro et al., 2006). 

An analogous connection to the stress response was discovered for higher plant FNR in work 

on antisense of tobacco (Nicotiana tabacum) FNR, which showed decreased chlorophyll, 

carotenoids and photosynthetic capacity, and increased lipid peroxidation and membrane 

leakage upon high-light treatment (Palatnik et al., 2003). Staining of whole leaves for ROS 

indicated that acceptor limitation at PSI caused an increased reduction state of the electron 

transport chain and 1O2 production. In addition, over-expression of pea (Pisum sativum) FNR 

in tobacco has been shown to afford protection from oxidative stress (Rodriguez et al., 2007). 

When subjected to MV-mediated oxidative stress the over-expressing plants showed less 

membrane leakage, chlorophyll loss and damage to PSII than the wt. Mirroring the work on 

tobacco, it has been reported that single mutants of both Arabidopsis (Arabidopsis thaliana) 

genes, FNR1 and FNR2, show increased membrane leakage when challenged with MV 

(Lintala et al., 2009). In the same study the authors found an isoform-specific effect, with fnr2 

knock-downs proving more tolerant than wt or fnr1 knock-outs to high-light stress at low 

temperatures. In fnr2 knock-downs, the remaining FNR1 is membrane-bound, while in fnr1 

mutants all remaining FNR2 is soluble. Intriguingly, there is other evidence for a relationship 

between FNR location within the chloroplast and oxidative stress. In tobacco, MV-derived, 

PET-dependent oxidative stress causes the solubilization of FNR (Palatnik et al., 1997), and 

it was recently reported that chloroplasts from Arabidopsis trol mutants, which lack one of the 
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FNR-thylakoid tethering proteins, generate lower amounts of superoxide than wt upon 

illumination (Vojta et al., 2015). 

We previously generated Arabidopsis plants with increased FNR, by over-expressing genes 

for different maize (Zea mays) FNR proteins under control of the native Arabidopsis promoter 

(Twachtmann et al., 2012). We used ZmFNR3, which is predominantly soluble, and ZmFNR1, 

which can bind to the thylakoid membrane when expressed in Arabidopsis. This resulted in 

FNR contents 1.5-2 times that of the wt. These enzymes have nearly identical catalytic 

properties (Okutani et al., 2005), that are similar to those of the native Arabidopsis FNRs 

(Hanke et al., 2005), meaning that the major difference between over-expression of ZmFNR1 

and ZmFNR3 lies in the chloroplast localization of the introduced enzymes. To better 

understand the impact of FNR content and location on plant stress tolerance, we have 

compared NADP+ and glutathione redox poise, O2
•− generation and responsive genes, and 

high-light stress response in plants expressing ZmFNR1 and ZmFNR3 and fnr1 mutants, 

which lack membrane bound FNR. Our data provide evidence that the content and location of 

FNR affect the redox balance of the chloroplast, with knock-on effects on redox signaling and 

stress tolerance.   

RESULTS 

FNR content correlates with redox poise of the NADP(H) pool 

In order to understand how FNR abundance and localization in Arabidopsis affects NADP+ 

photoreduction, and to examine the downstream effects of this, we first selected two 

genotypes with extreme differences in FNR content and location. In Arabidopsis fnr1 mutants, 

no FNR remains bound to the thylakoid (Lintala et al., 2007; Hanke et al., 2008), and over-

expression of maize FNR1 (ZmFNR1) in Arabidopsis results in enhanced accumulation of 

FNR at the thylakoid, specifically at TROL-dependent complexes (Twachtmann et al., 2012). 

Total FNR activity of the thylakoids from these genotypes confirms this (Figure 2A). While 

there is no difference in total electron flux by thylakoids from wt, fnr1, and ZmFNR1 expressing 

plants (Figure 2B), the difference in FNR contents translate into decreased NADP+-

photoreduction capacity of fnr1 thylakoids, and increased NADP+-photoreduction capacity in 

thylakoids from ZmFNR1 plants (Figure 2C). This is in agreement with work on FNR-over-

expressing tobacco, where a 20% stimulation of NADP+-photoreduction in isolated thylakoids 

was measured (Rodriguez et al., 2007), indicating that membrane-bound FNR can 

photoreduce NADP+. In the wt rates of electron flux to NADP+ (Figure 2C) are about one third 

to half the capacity for total electron flux from H2O (Figure 2B). This suggest that either loosely 

bound or soluble FNR lost in thylakoid preparation might be required for maximum rates of 



6 
 

electron flow to NADP+, or that FNR capacity limits flux to NADP+, as suggested by the 

antisense work in tobacco (Hajirezaei et al., 2002). 

We then tested whether the redox poise of NADP(H) (the NADP+/NADP(H) ratio) reflects the 

thylakoid capacity for NADP+ photoreduction. The redox state of the chloroplast NADP(H) pool 

is very accurately reflected in the activation state of the NADP-malate dehydrogenase (NADP-

MDH) (Scheibe and Stitt, 1988), reductive activation of which is strongly inhibited by NADP+. 

We therefore compared steady state activity to total capacity (Figure 2D) to determine the 

activation state of NADP-MDH (Figure 2E) in plants with altered FNR contents. This 

experiment showed significantly lower NADP-MDH activation in fnr1 plants, and significantly 

elevated NADP-MDH activation state in ZmFNR1 plants, confirming that redox poise of the 

NADP(H) pool does indeed correlate with the NADP+ photoreduction capacity of the 

thylakoids. This also demonstrates that in Arabidopsis the abundance and activity of NADP-

MDH is regulated to partly counteract the change in NADP+ photoreduction capacity. These 

data are in good agreement with work on tobacco FNR-antisense plants showing that the 

NADP+/NADPH ratio is increased (Hajirezaei et al., 2002), It also confirms the findings of 

Lintala et al. (2014), who showed that in tic62/trol double mutant plants lacking both FNR-

membrane tethers, NADP+/NADPH ratios were increased and the activation state of NADP-

MDH decreased (Lintala et al., 2014), indicating that FNR localization is critical to NADP+ 

redox poise. 

FNR contents correlate with glutathione redox state  

Altered NADP(H) redox poise likely impacts on the redox state of the entire chloroplast, and 

we therefore investigated redox poising mechanisms in plants with altered FNR content. GR 

reduction of glutathione (GSSG to 2xGSH) in the chloroplast is dependent on NADPH (Mittler 

et al., 2004; Foyer and Noctor, 2011). We investigated the impact of FNR content and location 

on total and oxidized amounts of glutathione in plant leaves. In this experiment we also 

examined the impact of FNR localization in more detail: in addition to ZmFNR1 expressing 

plants, plants expressing ZmFNR3, which is nearly all soluble (Twachtmann et al., 2012) were 

analysed. Both total and oxidized leaf glutathione are significantly elevated in the fnr1 mutant 

(Figure 3A), and the redox poise of glutathione is more oxidized (Figure 3B). Expression of 

both maize FNR genes results in a decrease in total glutathione (Figure 3A), and in the 

proportion of oxidized glutathione (Figure 3B). This is only statistically significant in the 

ZmFNR1-expressing lines, indicating that membrane-bound FNR might affect glutathione 

reduction more strongly than soluble FNR.  

Thylakoid-bound FNR activity decreases superoxide radical production in the light 
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In the reduced state Fd is capable of electron donation to O2, generating O2
•− (Misra and 

Fridovich, 1971) and inefficient Fd oxidation might lead to longer lifetimes for Fdred, and greater 

O2
•− production. To test this hypothesis, we measured light-dependent O2

•− production by 

thylakoid membranes (identical to those used in Figure 2) using electron paramagnetic 

resonance (EPR). This semi-in vitro system was used because intact chloroplasts contain 

SOD, which has an extremely high rate constant of O2
•− dismutation, complicating accurate 

quantitation of O2
•−. The PET chain was reconstituted by addition of Fd and NADP+. Figure 4A 

and B show light-dependent thylakoid O2
•− generation using the O2

•− detector 1-hydroxy-4-

isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H), which can react with O2
•−  in both 

soluble and membrane phases (Kozuleva et al., 2011; Kozuleva et al., 2015). Addition of SOD 

to the suspension, eliminating soluble O2
•−, allowed dissection of free radical generation by 

membrane bound and soluble pathways. 

Figure 4B shows that when Fd is added to illuminated membranes there is a significant 

increase in soluble O2
•− production, as the number of reduced FeS centers at the acceptor 

side of PSI increases. The further addition of saturating concentrations of NADP+ caused a 

significant decrease in soluble O2
•− generation. Intermembrane O2

•− production, presumably 

resulting from O2 reduction by phyllosemiquinone at PSI (Kozuleva et al., 2014), was 

unaffected by addition of FNR substrates. This finding is consistent with previous work on 

illuminated pea thylakoids (Kozuleva and Ivanov, 2010) where NADP+ suppressed O2 

reduction by Fd, but not by membrane-bound components.  

We then examined O2
•− production in thylakoids isolated from different genotypes (Figure 4C). 

For comparison the experiment presented in Figure 4C used the same thylakoids as the 

electron transport measurements in Figure 2. As expected, the addition of NADP+ to fnr1 

thylakoids has very little impact on O2
•− generation from Fdred in the light. In planta, fnr1 

chloroplasts will contain alternative sinks for Fdred, including soluble native FNR (AtFNR2), 

and this will presumably alleviate O2
•− production by electron transfer to NADP+ from Fdred to 

some extent. Total rates of O2
•− generation from ZmFNR1 thylakoids in the presence of NADP+ 

are lower than in the wt, probably due to a shorter lifetime of Fdred, and therefore decreased 

rates of O2
•− generation from Fdred. This correlates with the higher rate of NADP+ 

photoreduction by ZmFNR1 thylakoids (Figure 2). 

Excess soluble FNR increases superoxide radical production in the light 

The data in Figure 4C indicate that membrane bound FNR is capable of quenching O2
•− 

production by decreasing the dwell-time of electrons on Fd and passing electrons to stromal 

sinks. To test whether the addition of soluble FNR could compensate for the loss of 

membrane-bound FNR in fnr1 thylakoids, we challenged the thylakoid O2
•− detection system 
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with soluble FNR. We previously calculated that maize chloroplasts contain approximately 30 

µM FNR in the combined soluble and membrane fractions (Okutani et al., 2005). In 

Arabidopsis, the proportion of soluble FNR is between 25%-50% in wt plants (Hanke et al., 

2005; Benz et al., 2009). We therefore added a soluble, recombinant ZmFNR3 concentration 

of approximately the same order (5 µM) to fnr1 thylakoids, and illuminated in the presence 

and absence of NADP+ (Figure 5). Surprisingly, addition of soluble FNR to the system resulted 

in a dramatic increase in O2
•− production, and this was partly ameliorated by the omission of 

NADP+.  

Altered FNR content impacts on ROS and redox perception by the plant. 

It is well documented that signals originating from both glutathione redox poise and O2
•− 

influence gene expression (Mehta et al., 1992; Wagner et al., 2004; Mhamdi et al., 2010). To 

determine whether the FNR dependent changes to in vitro free radical generation (Figures 4 

and 5) also occur in planta, we tested transcript abundance of classical markers responding 

to general and O2
•−-specific oxidative stress (At2g21640 and DIR5 respectively, Mehterov et 

al., 2012) and chloroplast redox poise (NADP-MDH) (Scheibe et al., 2005; Hameister et al., 

2007) by real time quantitative RT-PCR (qRT-PCR). In addition, we selected genes which 

could potentially be connected to both FNR and redox poise, by interrogating databases of 

microarray and RNAseq data (see Supplemental Table S2 for details). We selected five genes 

that are upregulated in arrays comparing fnr1 mutants with wt, which also showed upregulation 

in conditions expected to impact on redox metabolism: WRKY53, WRKY70, LEA5/SAG21, 

ACD6 and SYP122. Transcript abundance of these genes was compared between wt, the fnr1 

mutant, and two lines each over-expressing ZmFNR1 and ZmFNR3, respectively by qRT-PCR 

(Figure 6). The two stress marker genes (DIR5 and At2g21640) and NADP-MDH have wt 

expression levels in fnr1. Apart from ACD6, transcripts of all genes potentially responding to 

both FNR loss and ROS or redox perturbation are increased in fnr1, although only SAG21 and 

SYP122 are statistically significant. FNR over-expressing plants also showed increased 

expression of these genes, although the amplitude of this change varies between lines. In 

contrast to fnr1, markers for both general and O2
•−-specific oxidative stress are also 

upregulated in the overexpressors.  

Finally, NADP-MDH transcripts were significantly increased in all ZmFNR-overexpressing 

lines, consistent with its role in the malate valve, exporting reducing equivalents to the cytosol 

when the NADP+/NADPH poise is excessively reduced (Scheibe, 2004). Although the 

correlation between FNR content and activation state of NADP-MDH is consistent between 

Arabidopsis (Figure 2) and tobacco (Hajirezaei et al., 2002), this is not the case for total 

enzyme capacity. FNR over-expression in tobacco has no impact, while in tobacco fnr 

antisense lines NADP-MDH activity increases (Scheibe and Dietz, 2012). By contrast, in 
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Arabidopsis we found that knock out of 50% FNR had no effect on total NADP-MDH activity 

while over-expression of FNR leads to an increased NADP-MDH transcript (Figure 4). Total 

activity also increases on FNR over-expression, but this is not statistically significant (Figure 

2). The reasons for this difference between species are unclear but the signals leading to 

upregulation of the NADP-MDH gene are poorly understood. Results in fnr antisense tobacco 

were interpreted as a response to an excessively reduced stroma (Scheibe and Dietz, 2012), 

and it may be that relative light intensity or photoperiod play a role. Indeed, transcript and 

protein of the single copy NADP-MDH gene in Arabidopsis only increase in response to high 

light when plants are grown in short day, but not long day conditions (Becker et al., 2006). No 

consistent difference in transcripts was observed between ZmFNR1 and ZmFNR3 expressing 

lines. In general, stronger responses were seen in ZmFNR1-2 and ZmFNR3-3 than in 

ZmFNR1-5 and ZmFNR3-5. 

There are several reports correlating FNR content with tolerance to high light and other 

oxidative stresses (Palatnik et al., 2003; Rodriguez et al., 2007; Lintala et al., 2012) and data 

in Figures 4, 5 and 6 indicate that increasing or decreasing FNR content alters ROS production 

and perception. We therefore compared the high light susceptibility of genotypes with altered 

FNR abundance and location (Figure 7). In this experiment, high-light treatment of the fnr1 

mutant did not result in significantly more membrane damage (measured as ion leakage) or 

damage to PSII (measured as ФII), which is a major site of O2
•− action (Krieger-Liszkay et al., 

2011). By contrast, both lines expressing ZmFNR1 appear partially protected, with significantly 

less PSII damage and membrane leakage, especially after a short, 1.5 h illumination. This 

protective effect is less pronounced for ZmFNR3-expressing plants, with only ФII being 

significantly improved relative to the wt. 

DISCUSSION 

Data presented in this study show that changes in FNR abundance and localization produce 

at least two distinct outcomes that are potentially relevant to plant stress tolerance: Firstly, the 

efficiency of NADP+ photoreduction has an impact on electron supply to ROS removal 

pathways. Secondly, altered free radical production, caused by either decreased or increased 

FNR can induce changes in gene transcription related to stress tolerance.  

A long Fdred half-life could result in O2
•− production 

Figure 1 highlights the role of FNR in connecting the (Fdred/Fd + e-) and (NADPH/NADP+ + H+ 

+ 2e-) redox couples. In vitro, uncoupling these pools leads to a longer half-life for Fdred, 

resulting in increased O2
•− production (fnr1 in Figure 4). However, under steady state 

conditions we did not detect upregulation of specifically O2
•− responsive genes in fnr1 (Figure 

4), and staining for ROS in the tobacco knock-downs detected a specific increase in 1O2 but 
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not O2
•− (Palatnik et al., 2003). Therefore, under steady state conditions other electron 

acceptors probably quench O2
•− generation from Fdred. Despite this, a prolonged Fdred half-life 

might be expected in specific conditions, and it is known that plants drastically decrease Fd 

contents under various stresses (Giro et al., 2006; Tognetti et al., 2006; Liu et al., 2013). Data 

in Figure 4 indicate that this could be because it is preferable to have charge recombination 

within PSI than low turnover of Fdred. Indeed, Arabidopsis mutants lacking the main Fd iso-

protein, Fd2, are more tolerant of extended high-light treatment (Liu et al., 2013). The authors 

attribute this to increased photosynthetic cyclic electron flow, but decreased O2
•− production 

could also play a role. In our experiments we did not detect greater susceptibility of 

Arabidopsis fnr1 mutants to high-light stress (Figure 7), but Lintala et al. (2009) found that both 

fnr1 mutants and fnr2 knock-downs were more susceptible to MV-induced oxidative stress at 

room temperature. Decreased FNR is also known to increase susceptibility to photo-oxidative 

stress in tobacco (Palatnik et al., 2003).  

Increased soluble FNR results in O2
•− production 

By contrast, increased membrane-bound FNR in the thylakoid system appears to improve 

coupling between the Fd:Fdred and NADP+:NADPH pools, with less flux to O2
•− in the presence 

of a NADP+ sink in vitro (Figure 4), and a more reduced NADP(H) pool (Figure 2), leading to 

a more reduced glutathione pool in planta (Figure 3). ZmFNR1 plants and, to a lesser extent 

ZmFNR3 plants, appear to be more tolerant to high-light treatment (Figure 7), in line with a 

previous work in tobacco (Rodriguez et al., 2007). Surprisingly, when we attempted to rescue 

O2
•− production in fnr1 thylakoids by the addition of soluble FNR, we measured a dramatic 

increase in O2
•− evolution (Figure 5). Interestingly, other studies on illuminated thylakoids 

report that addition of several flavoenzymes, including FNR, cause an increase in O2 

consumption (Goetze and Carpentier, 1993; Miyake et al., 1998). Although 

monodehydroascorbate reductase was identified as the most efficient O2
•− catalyst, FNR 

showed half the maximum rate at ~1.5 μM enzyme concentrations, still well below the total 

FNR concentration estimated for the chloroplast of ~30 μM (Okutani et al., 2005). Miyake et 

al. (1998) also report that this activity was independent of Fd, implying that FNR received 

electrons directly from PSI. By contrast, we measured maximum rates of O2
•− formation in the 

presence of NADP+, indicating turnover of the enzyme contributes. There are two possible 

explanations for this result. Firstly, we cannot discount the possibility that excess FNR 

catalyzes backflow of electrons from photoreduced NADPH to Fd, which in turn reduces O2, 

during the sampling and EPR measurement time. However, this seems unlikely because the 

higher FNR content of ZmFNR1 thylakoids does not drive greater O2
•− production (Figure 4C).  
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Alternatively, O2
•− may be generated at FNR. In our system PSI:Fd:FNR is altered from 

the in vivo ratio of 1:5:3 (Bohme, 1978). To minimize shading we used 33 μg chlorophyll ml-1, 

and assuming a chlorophyll:PSI ratio of 600:1 (Kohorn et al., 1992) this gives a PSI:Fd:FNR 

of ~1:80:80. Under these conditions, one Fdred will pass an electron to one FNR, forming a 

semiquinone on the FAD until a second Fdred allows completion of the catalytic cycle and 

reduction of NADP+. Limited electron supply from PSI would therefore extend the life-time of 

this unstable semiquinone before the second reduction, leading to increased electron donation 

to O2 from the semiquinone. Production of O2
•− by the FAD semiquinone radical of FNR is 

supported by a study from Bes et al. (1995), who report that while FNR is a poor electron 

donor to O2 when the FAD is fully reduced by NADPH, cross-liking FNR to a viologen molecule 

(which as a single electron carrier would generate a semiquinone at the FAD) converts the 

enzyme to an efficient NADPH oxidase, (Bes et al., 1995). The ratio of PSI:Fd:FNR therefore 

seems critical to minimize O2
•− production during PET.  

Interestingly, a spin trapping study on O2
•− generation by chloroplasts found that the trol 

mutant, which lacks an FNR-membrane tether and has decreased FNR at the membrane, also 

shows decreased O2
•− evolution (Vojta et al., 2015). As this difference is also seen on addition 

of methyl viologen, it is presumably unrelated to the photoreduction of FNR via Fd that we 

have measured with isolated thylakoids. Rather, the use of intact chloroplasts by Vojta et al., 

with theoretically intact ROS quenching mechanisms, indicates that an alternative quenching 

mechanism might be responsible.  

FNR mutants and over-expressors both show gene expression responses associated 

with oxidative stress under ambient conditions 

Increased O2
•− on perturbation of FNR content should be detectable at the level of gene 

expression, where many ROS markers have been identified (Mehta et al., 1992; Wagner et 

al., 2004). We selected markers for general oxidative stress, O2
•−-specific stress (At2g21640 

and DIR5, respectively) and genes potentially upregulated in response to both FNR loss and 

ROS or redox perturbation (Supplemental Table S2): expression of the WRKY70 transcription 

factor is induced by ROS (Brosche et al., 2014) and red light (Joo et al., 2005), and the protein 

counteracts cell death during senescence and plant defense by inducing a salicylic acid (SA) 

response and suppressing a JA response (Li et al., 2004; Li et al., 2006; Ulker et al., 2007; 

Shim et al., 2013); WRKY53 is highly induced by H2O2 and acts antagonistically to WRKY70, 

accelerating cell death during senescence and defense (Besseau et al., 2012); SAG21 is 

another senescence-associated gene whose expression is triggered by H2O2 and O2
•− (Salleh 

et al., 2012), and is reported to confer tolerance to oxidative stress in yeast (Mowla et al., 

2006). ACD6, and SYP122 are additional components of the SA-signaling network initiated 
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during defense (Lu et al., 2003; Zhang et al., 2007; Zhang et al., 2008; Tateda et al., 2015). 

Interestingly, both WRKY53 and SAG21 were also found to be upregulated in trol mutants 

(Juric et al., 2009). Unexpectedly, qRT-PCR indicates that mRNAs of these genes are 

increased not only in fnr1, but also in both ZmFNR1- and ZmFNR3-expressing plants, which 

additionally show upregulation of oxidative stress and O2
•−-specific markers (Figure 6). This 

finding opens up the intriguing possibility that the protection against oxidative stress in FNR 

over-expressing plants might be partly due to systemic acquired acclimation (Rao et al., 1997), 

with plants “primed” by O2
•− generated under growth-light conditions pre-inducing oxidative 

stress protection. This may partly explain their increased tolerance to high-light stress (Figure 

7). Critically, although fnr1 plants do show increased expression of some genes that respond 

to oxidative stress, the specific marker for O2
•− is not upregulated (Figure 6), consistent with a 

lack of priming and a failure to increase high light tolerance (Figure 7).  

Relative contributions of membrane bound and soluble FNR 

In vitro measurements allowed us to dissect the impact of increased membrane bound FNR, 

which results in lower O2
•− production (Figure 4C) from increased soluble FNR, which resulted 

in increased O2
•− production (Figure 5). However, expression of both membrane bound and 

soluble FNR resulted in perception of O2
•− at the level of gene expression (Figure 6) and 

improved high light tolerance (Figure 7). All FNR expressing lines also contain native FNRs in 

both soluble and membrane bound locations and so the results indicate that total FNR content 

may be more critical than localization under these growth conditions. However, plants 

expressing membrane bound FNR have a more reduced glutathione pool (Figure 3), and were 

slightly more tolerant to high light stress than those expressing soluble FNR (Figure 7). In 

combination with the observation that fnr2 plants (which have membrane bound FNR) are 

more stress tolerant than fnr1 plants (which have only soluble FNR) at low temperature (Lintala 

et al., 2009), this supports a greater role for membrane bound FNR in stress tolerance. 

Metabolic impact of FNR on redox poise and stress tolerance 

FNR contents, in particular of membrane-bound FNR, correlate with glutathione redox poise 

(Figure 3) and activation state of the NADP-MDH, which is a readout of NADP+/NADPH redox 

poise (Figure 2). Based on these data, we propose that the velocity of NADPH regeneration 

may be translated to the redox poise of chloroplast glutathione. This has previously been 

reported for the cytosol, where inhibition of the oxidative pentose phosphate pathway prevents 

NADP+ reduction, resulting in a more oxidized glutathione pool (Mou et al., 2003). However, 

the changes in glutathione redox poise seen in Figure 3 are unlikely to result in altered 

ascorbate regeneration, because the ascorbate:DHAR redox couple has a much more positive 

redox potential than the GSH/GSSG redox couple (Foyer and Noctor, 2011) and will therefore 
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remain predominantly reduced even when the majority of glutathione is oxidized. For this 

reason, differences in ascorbate regeneration can probably be discounted as the cause of 

altered stress tolerance of fnr1 and ZmFNR1 plants (Figure 7). Alternatively, altered 

glutathione redox poise in fnr1 and ZmFNR lines might influence signaling cascades 

originating in cytosolic glutathione (Chen and Dickman, 2004; Mhamdi et al., 2010). Oxidized 

cytosolic glutathione can be transported into the vacuole (Queval et al., 2011) and the 

chloroplast membrane contains glutathione transporters (Maughan et al., 2010), suggesting 

that chloroplast glutathione redox poise might also be transmitted to the cytosol. Indeed, 

WRKY53 has been shown to interact with a glutathione S-transferase in a yeast 2-hybrid 

screen (Van Eck et al., 2014), providing a link between glutathione redox poise and genes 

with increased transcript in both fnr1 and ZmFNR lines (Figure 6).  

Finally, altered FNR activity might also impact on the metabolic capacity of the cell to dissipate 

oxidative stress. For example, disturbed NADPH/NADP+ ratios could result in altered electron 

supply, not only to GR, but also other NADPH-dependent enzymes involved in stress 

response, such as chloroplast alkenal/one oxidoreductase (Yamauchi et al., 2012). As 

highlighted in Figure 1, chloroplast stress relief enzymes are supported by both Fd- and 

NADPH-reduction systems. The correlation between FNR content and stress tolerance might 

reflect the capacity to interconvert Fd and NADPH, allowing the plant to rapidly exploit both 

Fd-dependent and NADPH-dependent ROS removal and regulatory mechanisms in the 

chloroplast (Asada, 1999; Hanke et al., 2009; Foyer and Noctor, 2011).  

In summary, our work indicates that the ratio between components at the end of the linear 

electron transport chain is critical to efficiently couple the Fd/Fdred and NADP+/NADPH redox 

pools, prevent superoxide generation, and balance the chloroplast redox poise. The resultant 

disturbances in chloroplast and glutathione redox poise, and in ROS perception will influence 

the plant´s investment in either photosynthetic apparatus, or stress response machinery, and 

therefore affect growth efficiency. This provides an example of how fine tuning the ratio of 

specific PET chain components can induce a stress acclimation response.  

METHODS 

Plant Growth, Chloroplast Isolation and Thylakoid Preparation 

Unless otherwise indicated, plants were grown in 10 h light at 21°C, 14 h dark at 18°C. 

Chloroplast preparation for electron transport and EPR measurements with thylakoid 

membranes was basically as described previously (Hanke et al., 2008). Genotypes wt Col and 

fnr1 were as described previously (Hanke et al., 2008), maize FNR1 and FNR3 over-

expressing plants were as described previously (Twachtmann et al., 2012). Plants for high-

light treatment were germinated under Lumilux cool white lights (Osram FQ, Germany) at 150 
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µE s-1 m-2 and transferred to growth chambers with SON-T Agro lamps (Phillips, Eindhoven, 

The Netherlands) at the same light intensity 1 week before high-light treatment at 600 µE s-1 

m-2 under SON-T Agro lamps. 

Measurements of Electron Transfer Activity in Isolated Thylakoids 

Total electron transfer capacity of thylakoids was measured as electron flux to [Fe(CN)6]3- on 

illumination with light above 610 nm (cut-off filter) at 600 µE m-2 s-1 in a 1 mm light path cuvette. 

Reactions contained thylakoids at a final chlorophyll concentration of 33 µg ml-1, 330 mM 

sorbitol, 50 mM HEPES, 20 mM NaCl, 5 mM MgCl2, 0.1 µM nigericin and 500 µM [Fe(CN)6]3-

. Absorbance difference between 420 nm and 540 nm was measured after 0, 0.5, 1, 2 and 5 

min illumination to calculate the rate. NADP+ photoreduction was measured in an identical 

system, substituting 5 µM Arabidopsis Fd2 and 200 µM NADP+ for [Fe(CN)6]3-, and following 

the change in absorbance difference between 340 nm and 390 nm. Total FNR activity was 

measured in the supernatant following a 0.1% Triton X-100 wash of thylakoid membranes to 

remove all peripheral proteins. The reaction was followed in a cytochrome c reduction assay 

as described previously (Hanke et al., 2004) in the presence of a 10 µM concentration of 

Arabidopsis Fd2 (purified as described by Hanke et al., 2004). 

Determination of NADP-MDH Activation State  

Measurements were performed basically as described previously (Scheibe and Stitt, 1988). In 

brief, leaf material was rapidly sandwiched between two sheets of solid CO2 before grinding 

in liquid nitrogen avoiding any shading prior to freeze-clamp. All following steps were 

performed in degassed buffers under N2. Protein was extracted into 50 mM HEPES pH 6, 2 

mM EDTA, 2 mM DTT, 1 mM Pefabloc, 0.1% BSA and 0.1% Triton X-100 to maintain in situ 

activity, and enzyme activity was measured in 100 mM Tris-HCl pH 8, 1 mM EDTA, 0.1% BSA, 

0.2 mM NADPH. Reactions were started by addition of 1 mM oxaloacetic acid, and rates were 

followed at 340 nm. Rates were corrected for non-specific NADP-dependent activity of the 

more abundant NAD-MDH (0.2% of the NAD-dependent rate was assumed to be due to the 

non-specific NADP-dependent activity; NAD-MDH activity was measured at a higher extract 

dilution by addition of NADH rather than NADPH) (Scheibe and Stitt, 1988). Total activity was 

established by enzyme activation at room temperature in activation buffer: 200 mM Tris-HCl 

pH 8.4, 1 mM EDTA, 1 mM Pefabloc, 1 % BSA, 100 mM DTT. Activity was measured at 0, 10, 

20 and 40 min to confirm a plateau of maximum activity. 

Total and Oxidized Glutathione Measurements 

Metabolite assays were performed on mature leaf tissue from 6-8 week old plants. Tissue was 

always harvested under growth lights by grinding in liquid nitrogen. The assays for total and 

oxidized glutathione were performed with the glutathione (total), detection kit from Enzo Life 
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Sciences (Lörrach, Germany) according to the manufacturer´s instructions, except for 

measurement of oxidized glutathione, where 20 mM 2-vinylpyridine rather than 4-vinylpyridine 

was used to block free thiol sites. 

EPR Spectroscopy for superoxide detection 

Reactions were assembled at low light (< 1 µE s-1 m-2) in a quartz cuvette in a volume of 150 

µl containing thylakoids (33 µg chlorophyll ml-1), 330 mM sorbitol, 50 mM HEPES-NaOH (pH 

7.5), 1 mM MgCl2, 50 µM deferoxamine mesilate, 0.1 µM nigericin, and 3.3 µM 1-hydroxy-4-

isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) (Kozuleva et al., 2011) unless 

otherwise specified. Aliquots of 20 µl were taken for the EPR measurements. Light treatments 

were at 600 µE s-1 m-2 for 2 min at 21°C, using a 100 W halogen lamp unless otherwise stated. 

To prevent unwanted radical formation from the spin trap by UV radiation, a cut-off filter 

removing wavelengths below 610 nm was used. EPR measurements were performed at room 

temperature (296–299 K) with a home-made X-band EPR spectrometer equipped with a 

Bruker dielectric resonator or on a Miniscope X-band benchtop EPR spectrometer (MS200; 

Magnettech GmbH, Berlin, Germany) equipped with a rectangular TE102 resonator, with the 

microwave power set to 0.4–0.6 mW and B-field modulation amplitude adjusted to 0.15 mT. 

Samples were measured in EPR glass capillaries (0.9 mm inner diameter). 

The O2
•− radical concentration was calculated using a standard solution of the stable nitroxide 

radical TEMPOL at a known concentration. In order to distinguish soluble superoxide radical 

generation from radical production within the thylakoid membrane, superoxide dismutase (200 

U ml-1) was added to the suspension. The total rate of O2
•− generation was equal to the rate 

of nitroxide radical accumulation in the absence of SOD. The rate of soluble (“stromal”) O2
•− 

generation was calculated by subtracting the rate of nitroxide radical accumulation in the 

presence of SOD (+SOD) from the total rate (-SOD).  

Recombinant maize FNR3 was prepared as describe previously (Okutani et al., 2005).  

Quantitative Real-Time PCR 

Total RNA was isolated from 100 mg frozen leaf material by using PureLink® RNA Mini Kit 

(Ambion, Thermo Fisher Scientific, Darmstadt, Germany) as per the manufacturer's protocol, 

with some additional modifications. After RNA isolation, DNase digestion was performed to 

remove genomic DNA using TURBO DNA-free™ Kit (Ambion, Thermo Fisher Scientific, 

Darmstadt, Germany). The method was performed according to the manufacturer's 

instructions. After RNA isolation and DNase treatment, samples were analyzed by qPCR to 

test for contamination with genomic DNA using intron-specific primers (Supplemental Table 

S3). Afterwards, cDNA was synthesized from 2 μg total RNA using oligo(dT) as primers 



16 
 

according to the manufacturer's instructions (Fermentas RevertAidTM First Strand cDNA 

Synthesis Kit, Fermentas GmbH, St. Leon-Rot, Germany). 

Quantitative real-time PCR was performed as described previously (Karpinski et al., 1999). 

Briefly, all primers were tested for their precise annealing temperature and efficiency before 

use. A PCR assay efficiency range from 90% to 110% was considered acceptable. Thereafter, 

only primers exhibiting this efficiency were used and are shown in Supplemental Table S3. 

Real-time PCR was performed using a Thermal Cycler (C1000TM, Biorad, München) and a 

real-time system (CFX96TM, Biorad, München). All transcripts were normalized to the 

housekeeping gene RAN3. 

Chlorophyll Fluorescence and Membrane Leakage 

Measurements were performed on 1 cm diameter leaf discs cut from mature leaves of 6-8 

week old plants. Leaf discs were floated on 4 ml MilliQ water before high-light treatment. Ion 

leakage was detected as conductivity of the water solution measured with an electrode 

(Hannah Instruments, Kehl am Rhein, Germany) and fluorescence of leaf discs was measured 

using a FluorCam (Photon Systems Instruments, Brno, Czech Republic). Photosystem II 

capacity (ΦII) was calculated following 10 min dark adaptation, as FV (variable fluorescence 

after dark adaptation) / FM (maximal fluorescence after dark adaptation).  

Accession Numbers 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 

GenBank/EMBL databases under the following accession numbers: maize FNR1, BAA88236; 

FNR3, ACF85815; Arabidopsis FNR1, AT5G66190; FNR2, AT1G20020; WRKY53, 

AT4G23810; WRKY70, AT3G56400; LEA5/SAG21, AT4G02380; ACD6, AT4G14400; 

SYP122, AT3G52400; RAN3, AT5G55190. 

Supplemental Material 

Supplemental Figure S1. Response of Arabidopsis plants with different FNR contents to high 

light treatment (original data). 

Supplemental Table S1. Rates of NADP-MDH activity in crude protein extracts of Arabidopsis 

leaves.  

Supplemental Table S2. Rationale for the selection of genes investigated by qRT-PCR in 

Figure 6. 

Supplemental Table S3. Primers used in cDNA quality control and qRT-PCR. 
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Figure Legends 
 
Figure 1. FNR plays a central role in chloroplast redox metabolism. Simplified diagram of 

chloroplast redox metabolism related to the transfer of electrons between the ferredoxin redox 

couple (Fdred / Fd + e-) and the NADP(H) redox couple (NADPH / NADP+ + H++ 2e-) by the 

enzyme FNR. Photosynthetic electron transport (PET) reduces Fd to Fdred, and both PET and 

Fdred are sources of superoxide (O2
•−). There are many Fd-dependent enzymes, including 

essential components of bioassimilation and biosynthesis (Hanke and Mulo, 2013) and the 

ferredoxin:thioredoxin reductase (FTR), which reduces thioredoxin (Trx), transducing a redox 

signal to regulate many chloroplast enzymes (Schurmann and Buchanan, 2008). The majority 

of Fdred is oxidized by the enzyme FNR to reduce NADP+ to NADPH. NADP+ is regenerated 

by many enzymes, including other proteins involved in biosynthesis and bioassimilation and 

the NADPH-dependent Trx reductase C (NTRC), which also reduces thiol groups, resulting in 

a redox signal and supports antioxidant metabolism by regenerating 2-Cys peroxiredoxin 

(Dietz et al., 2002). When the redox poise of the NADP(H) pool is too reduced, NADP+ can be 

regenerated by the NADP-malate dehydrogenase (NADP-MDH), and operation of the malate 

valve to export reducing equivalents from the chloroplast (Backhausen et al., 1994). The O2
•− 

radical is removed in the water-water cycle by the action of first superoxide dismutase (SOD) 

and then ascorbate peroxidase (APX), resulting in oxidation of ascorbate to dehydroascorbate 

(Foyer and Halliwell, 1976; Groden and Beck, 1979; Asada, 1999). Reductive regeneration of 

ascorbate can be supported directly by Fdred, or through glutathione (GSH) oxidation to GSSG 

by dehydroascorbate reductase (DHAR). GSH regeneration is supported in turn by NADPH, 

through action of glutathione reductase (GR). Thus both Fdred and FNR are involved in removal 

of reactive oxygen species (ROS).  

Figure 2. FNR activity and chloroplast NADP(H) poise is altered in FNR transgenics. A, FNR 

activity of isolated thylakoid membranes from Arabidopsis wt, fnr1 mutant and two 

independent lines expressing maize FNR1, measured as reduction of cytochrome c on 

addition of NADPH and 10 µM Fd. B, Capacity for light-dependent electron flux from H2O by 

isolated thylakoid membranes of the indicated plants, measured as reduction of [Fe(CN)6]3- by 

PSI on illumination. (C) Light-dependent NADP+ photoreduction by isolated thylakoid 

membranes from the indicated plants, measured as reduction of NADP+ by PSI on illumination. 

A, B and C values are means ±s.e. of 3 measurements and typical of two separate 

experiments. D, Measurement of NADP(H) redox poise. Arabidopsis plants with the indicated 

genotypes were harvested either under growth-light (grey) or dark-adapted (black) conditions. 

Extracts were used for measurement of steady state NADP-MDH activity.  Total enzyme 

activity (white bars) was determined following incubation of the extract for 40 min in activating 

buffer (see methods). Values are means ± s.e. of 3-6 biological replicates. As dark values are 
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low to non-detectable, original values are given in Supplemental Table S1 for clarity. E, 

Percentage activation state of NADP-MDH in the indicated genotypes under steady-state 

growth-light conditions, calculated for the individuals averaged in part D. Values are means ± 

s.e. of 3-6 biological replicates. Significant differences in of fnr1 and FNR1 expressing plants 

from the wt in a t-test for small samples are indicated by * (P<0.05). 

Figure 3. Downstream impact of FNR content on redox poise of glutathione. A, Measurement 

of total glutathione (black) and glutathione in the oxidized state (white) in leaves of wt, fnr1, 

two independent lines expressing ZmFNR1, and two independent lines expressing ZmFNR3, 

measured by enzymatic cycling assay. B, Percentage of glutathione in the oxidized state in 

leaves of wt, fnr1, two independent lines expressing ZmFNR1, and two independent lines 

expressing ZmFNR3, calculated from the data shown in A. Values are means ±s.e. of 3-6 

biological replicates. In comparisons with wt, statistical significance in a t-test for small 

samples is indicated by * (p < 0.05), ** (p < 0.01).  

Figure 4. Impact of thylakoid FNR content on O2
- production. A, Detection of light dependent 

O2
-evolution from purified Arabidopsis thylakoid membranes. Representative electron 

paramagnetic resonance (EPR) spectra before (black lines) and after (blue lines) illumination. 

The experiment was performed in the absence (upper panels) and presence (lower panels) of 

superoxide dismutase (SOD) to remove soluble O2
-. B, Left, light-dependent TMT radical 

generation by thylakoid membranes, calculated using the spectra shown in part A and two 

further replicates, in the absence (diagonal stripes) and presence (horizontal stripes) of SOD. 

In comparisons between - SOD measurements, significant difference from thylakoid only 

measurements in a t-test for small samples is indicated by * (p < 0.05), ** (p < 0.01). Right, 

light-dependent soluble O2
- evolution by Arabidopsis thylakoid membranes calculated by 

subtracting +SOD from the –SOD rates shown in the graph on the left. C, Light dependent 

soluble O2
- evolution in thylakoid membranes from the indicated Arabidopsis genotypes, 

calculated by subtracting the +SOD from the –SOD rates, in the presence of Fd (white bars) 

or Fd and NADP+ (black bars). Standard deviation of the original data was less than 5% and 

significant difference from the equivalent wt measurement in a t-test for small samples is 

indicated by * (p < 0.05), ** (p < 0.01). Experiment was repeated two times with similar results.  

Figure 5. Impact of additional soluble FNR on superoxide production. Left, light dependent 

TMT radical generation by fnr1 thylakoid membranes illuminated with variable combinations 

of Fd, NADP+ and soluble FNR in the absence (diagonal stripes) and presence (horizontal 

stripes) of SOD. In comparisons between - SOD measurements, statistical difference from 

fnr1 + Fd + NADP+ in a t-test for small samples is indicated by * (p < 0.05), ** (p < 0.01). Right, 

light –dependent soluble O2
- evolution in Arabidopsis thylakoid membranes, calculated by 
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subtracting +SOD from the –SOD rates shown in the graph on the left. The experiment was 

repeated two times with similar results. 

Figure 6. Transcript abundance of ROS and redox responsive genes in wt, fnr1 and two 

independent lines expressing either membrane bound (ZmFNR1) or soluble (ZmFNR3) FNR. 

Genes are: a responsive marker for O2
•-, DIR5; a responsive marker for oxidative stress, 

At2g21640; a marker for disturbed NADP(H) poise, NADP-MDH; and 5 genes whose transcript 

is reported to be upregulated both in fnr1 and in response to ROS or redox perturbation: 

WRKY53, WRKY70, SAG21, SYP122 and ACD6. Histograms show mean normalized 

expression (MNE) relative to the housekeeping gene RAN3. RNA was isolated from plants 3 

h into the light period in standard growth conditions and qRT-PCR performed with the resulting 

cDNA. Values are means ±s.e. of three biological replicates. Statistical significance, in a t-test 

is indicated by * (p< 0.05). 

Figure 7. High light tolerance of fnr1 and FNR over-expressing transgenic plants. High light 

induced damage to wt (black bars), fnr1 (white bars), two independent lines over-expressing 

the membrane bound ZmFNR1 (horizontal bars) and two independent lines over-expressing 

the soluble ZmFNR3 verticle bars). Leaf discs were excised from the leaves of at least 5 

individual plants 1 h into the light period, floated on 3 ml MilliQ water and exposed to 600 µE 

high light stress. Damage was followed by A, measuring PSII capacity (Φ II of the leaf discs) 

and B, membrane leakage (increased conductivity of the MilliQ water) at the indicated time 

points. The dark bar between 4.5 and 21 h represents an 8 h night period. Data displayed are 

% of initial values from 5 biological replicates, averages of which are given in Supplemental 

Figure S1. In comparison with changes in the wt, statistical significance in a t-test for small 

samples is indicated by * (p < 0.05). 
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