Inspired by the problem of Planckian scattering we describe a classical
effective field theory for weak ultra relativistic scattering in which field
propagation is instantaneous and transverse and the particles' equations of
motion localize to the instant of passing. An analogy with the non-relativistic
(post-Newtonian) approximation is stressed. The small parameter is identified
and power counting rules are established. The theory is applied to reproduce
the leading scattering angle for either a scalar interaction field or
electro-magnetic or gravitational; to compute some subleading corrections,
including the interaction duration; and to allow for non-zero masses. For the
gravitational case we present an appropriate decomposition of the gravitational
field onto the transverse plane together with its whole non-linear action. On
the way we touch upon the relation with the eikonal approximation, some
evidence for censorship of quantum gravity, and an algebraic ring structure on
2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec
4 and detailed in App C. Version accepted for publication in JHE