53 research outputs found

    Evidence of Distinct Tumour-Propagating Cell Populations with Different Properties in Primary Human Hepatocellular Carcinoma

    Get PDF
    Increasing evidence that a number of malignancies are characterised by tumour cell heterogeneity has recently been published, but there is still a lack of data concerning liver cancers. The aim of this study was to investigate and characterise tumour-propagating cell (TPC) compartments within human hepatocellular carcinoma (HCC).After long-term culture, we identified three morphologically different tumour cell populations in a single HCC specimen, and extensively characterised them by means of flow cytometry, fluorescence microscopy, karyotyping and microarray analyses, single cell cloning, and xenotransplantation in NOD/SCID/IL2Rγ/⁻ mice.The primary cell populations (hcc-1, -2 and -3) and two clones generated by means of limiting dilutions from hcc-1 (clone-1/7 and -1/8) differently expressed a number of tumour-associated stem cell markers, including EpCAM, CD49f, CD44, CD133, CD56, Thy-1, ALDH and CK19, and also showed different doubling times, drug resistance and tumorigenic potential. Moreover, we found that ALDH expression, in combination with CD44 or Thy-1 negativity or CD56 positivity identified subpopulations with a higher clonogenic potential within hcc-1, hcc-2 and hcc-3 primary cell populations, respectively. Karyotyping revealed the clonal evolution of the cell populations and clones within the primary tumour. Importantly, the primary tumour cell population with the greatest tumorigenic potential and drug resistance showed more chromosomal alterations than the others and contained clones with epithelial and mesenchymal features.Individual HCCs can harbor different self-renewing tumorigenic cell types expressing a variety of morphological and phenotypical markers, karyotypic evolution and different gene expression profiles. This suggests that the models of hepatic carcinogenesis should take into account TPC heterogeneity due to intratumour clonal evolution

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Magnetomechanical coupling in transition metals

    No full text
    The Gruneisen parameter is equal to about 2 for most substances, Its value is higher in the case of interactions, for example, electron-phonon and exchange interaction, magnetovolume instability. The parameter has very large values for Invar alloys and the coupling between thermal disorder and magnetic fluctuations dominates in finite-temperature properties
    corecore