154 research outputs found

    Three-dimensional hybrid grid generation using advancing front techniques

    Get PDF
    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface

    Camera-based Prospective Motion Correction in Paediatric Epilepsy Patients Enables EEG-fMRI Localization Even in High-motion States

    Get PDF
    BACKGROUND: EEG-fMRI is a useful additional test to localize the epileptogenic zone (EZ) particularly in MRI negative cases. However subject motion presents a particular challenge owing to its large effects on both MRI and EEG signal. Traditionally it is assumed that prospective motion correction (PMC) of fMRI precludes EEG artifact correction. METHODS: Children undergoing presurgical assessment at Great Ormond Street Hospital were included into the study. PMC of fMRI was done using a commercial system with a MoirĂ© Phase Tracking marker and MR-compatible camera. For retrospective EEG correction both a standard and a motion educated EEG artefact correction (REEGMAS) were compared to each other. RESULTS: Ten children underwent simultaneous EEG-fMRI. Overall head movement was high (mean RMS velocity < 1.5 mm/s) and showed high inter- and intra-individual variability. Comparing motion measured by the PMC camera and the (uncorrected residual) motion detected by realignment of fMRI images, there was a five-fold reduction in motion from its prospective correction. Retrospective EEG correction using both standard approaches and REEGMAS allowed the visualization and identification of physiological noise and epileptiform discharges. Seven of 10 children had significant maps, which were concordant with the clinical EZ hypothesis in 6 of these 7. CONCLUSION: To our knowledge this is the first application of camera-based PMC for MRI in a pediatric clinical setting. Despite large amount of movement PMC in combination with retrospective EEG correction recovered data and obtained clinically meaningful results during high levels of subject motion. Practical limitations may currently limit the widespread use of this technology

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure

    Viking Afterbody Heating Computations and Comparisons to Flight Data

    Get PDF
    Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods

    Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis

    Get PDF
    The isolation and characterization of the phytoene synthase gene from the green microalga Chlorella zofingiensis (CzPSY), involved in the first step of the carotenoids biosynthetic pathway, have been performed. CzPSY gene encodes a polypeptide of 420 amino acids. A single copy of CzPSY has been found in C. zofingiensis by Southern blot analysis. Heterologous genetic complementation in Escherichia coli showed the ability of the predicted protein to catalyze the condensation of two molecules of geranylgeranyl pyrophosphate (GGPP) to form phytoene. Phylogenetic analysis has shown that the deduced protein forms a cluster with the rest of the phytoene synthases (PSY) of the chlorophycean microalgae studied, being very closely related to PSY of plants. This new isolated gene has been adequately inserted in a vector and expressed in Chlamydomonas reinhardtii. The overexpression of CzPSY in C. reinhardtii, by nuclear transformation, has led to an increase in the corresponding CzPSY transcript level as well as in the content of the carotenoids violaxanthin and lutein which were 2.0- and 2.2-fold higher than in untransformed cells. This is an example of manipulation of the carotenogenic pathway in eukaryotic microalgae, which can open up the possibility of enhancing the productivity of commercial carotenoids by molecular engineering

    Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    Get PDF
    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process

    Trace elements in glucometabolic disorders: an update

    Get PDF
    Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications.

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases
    • 

    corecore