80 research outputs found

    Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during <it>in vitro </it>biofilm development of <it>Streptococcus mutans </it>UA159 on several different dental surfaces.</p> <p>Results</p> <p>Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of <it>S. mutans</it>, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by <it>S. mutans </it>embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the <it>S. mutans </it>genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different.</p> <p>Conclusions</p> <p>Our results demonstrate that gene expression of <it>S. mutans </it>differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.</p

    Oral Health Status and Salivary Properties in Relation to Gluten-free Diet in Children With Celiac Disease

    Get PDF
    ABSTRACT Background: Patients with celiac disease (CD) have a wide variety of symptoms, from being asymptomatic to having chronic diarrhea, abdominal pain, and extraintestinal symptoms. In the oral cavity, enamel defects and recurrent aphthous stomatitis are the most common symptoms. The aim of the study was to assess oral health, bacterial colonization and salivary buffering capacity of patients with CD at diagnosis were compared with patients with CD receiving a gluten-free diet (GFD) and healthy children. Methods: Three groups were prospectively investigated: newly diagnosed CD, CD treated with GFD, and a control group. All of the children were examined by pediatric dentists, and saliva samples were collected for bacterial and pH analysis. Results: Ninety children were enrolled in the study, 30 in each group. A higher prevalence of enamel hypoplasia (66%) was found in children with CD. Plaque index was significantly lower in the celiac-treated group, which correlated with oral health behavior: teeth brushing and frequency of eating between meals. Children receiving GFD brushed their teeth and used fluoride significantly more often than other children in the study. No difference between groups was found in snack consumption, mutans streptococci and lactobacilli counts in saliva, as well as pH and buffer capacity. Conclusions: A lower degree of plaque was found in children with CD receiving GFD. This finding could not be explained by salivary properties or bacteria, but rather by better oral hygiene. The results should raise the awareness of pediatric gastroenterologists toward oral health-related issues in children with CD

    Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    Full text link
    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Definitive characterization of CA 19-9 in resectable pancreatic cancer using a reference set of serum and plasma specimens

    Get PDF
    The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9

    Immunological Mechanism of Action and Clinical Profile of Disease-Modifying Treatments in Multiple Sclerosis

    Get PDF
    corecore