536 research outputs found

    Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    Get PDF
    Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash–Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid

    Ground State Energy of the One-Dimensional Discrete Random Schr\"{o}dinger Operator with Bernoulli Potential

    Full text link
    In this paper, we show the that the ground state energy of the one dimensional Discrete Random Schroedinger Operator with Bernoulli Potential is controlled asymptotically as the system size N goes to infinity by the random variable \ell_N, the length the longest consecutive sequence of sites on the lattice with potential equal to zero. Specifically, we will show that for almost every realization of the potential the ground state energy behaves asymptotically as π2N+1)2\frac{\pi^2}{\ell_N+1)^2} in the sense that the ratio of the quantities goes to one

    Determination of the high-twist contribution to the structure function xF3νNxF^{\nu N}_3

    Get PDF
    We extract the high-twist contribution to the neutrino-nucleon structure function xF3(ν+νˉ)NxF_3^{(\nu+\bar{\nu})N} from the analysis of the data collected by the IHEP-JINR Neutrino Detector in the runs with the focused neutrino beams at the IHEP 70 GeV proton synchrotron. The analysis is performed within the infrared renormalon (IRR) model of high twists in order to extract the normalization parameter of the model. From the NLO QCD fit to our data we obtained the value of the IRR model normalization parameter Λ32=0.69±0.37 (exp)±0.16 (theor) GeV2\Lambda^2_{3}=0.69\pm0.37~({\rm exp})\pm0.16~({\rm theor})~{\rm GeV}^2. We also obtained Λ32=0.36±0.22 (exp)±0.12 (theor) GeV2\Lambda^2_{3}=0.36\pm0.22~({\rm exp})\pm0.12~({\rm theor})~{\rm GeV}^2 from a similar fit to the CCFR data. The average of both results is Λ32=0.44±0.19 (exp) GeV2\Lambda^2_{3}=0.44\pm0.19~({\rm exp})~{\rm GeV}^2.Comment: preprint IHEP-01-18, 7 pages, LATEX, 1 figure (EPS

    Stokes Diagnostis of 2D MHD-simulated Solar Magnetogranulation

    Full text link
    We study the properties of solar magnetic fields on scales less than the spatial resolution of solar telescopes. A synthetic infrared spectropolarimetric diagnostics based on a 2D MHD simulation of magnetoconvection is used for this. We analyze two time sequences of snapshots that likely represent two regions of the network fields with their immediate surrounding on the solar surface with the unsigned magnetic flux density of 300 and 140 G. In the first region we find from probability density functions of the magnetic field strength that the most probable field strength at logtau_5=0 is equal to 250 G. Weak fields (B < 500 G) occupy about 70% of the surface, while stronger fields (B 1000 G) occupy only 9.7% of the surface. The magnetic flux is -28 G and its imbalance is -0.04. In the second region, these parameters are correspondingly equal to 150 G, 93.3 %, 0.3 %, -40 G, and -0.10. We estimate the distribution of line-of-sight velocities on the surface of log tau_5=-1. The mean velocity is equal to 0.4 km/s in the first simulated region. The averaged velocity in the granules is -1.2 km/s and in the intergranules is 2.5 km/s. In the second region, the corresponding values of the mean velocities are equal to 0, -1.8, 1.5 km/s. In addition we analyze the asymmetry of synthetic Stokes-V profiles of the Fe I 1564.8 nm line. The mean values of the amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude asymmetry is increased to 10% while the area asymmetry is only slightly varied.Comment: 24 pages, 12 figure

    Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome&#8211;positive B-precursor acute lymphoblastic leukemia

    Get PDF
    Background: A single-arm, phase 2 trial demonstrated the efficacy and safety of blinatumomab, a bispecific T-cell\u2013engaging antibody construct, in patients with relapsed/refractory (r/r) Philadelphia chromosome\u2013positive (Ph+) acute lymphoblastic leukemia (ALL), a rare hematologic malignancy with limited treatment options. This study compared outcomes with blinatumomab with those of a historical control treated with the standard of care (SOC). Methods: The blinatumomab trial enrolled adult patients with Ph+ ALL who were r/r to at least 1 second-generation tyrosine kinase inhibitor (n&nbsp;=&nbsp;45). Propensity score analysis (PSA) was used to compare outcomes with blinatumomab with those of an external cohort of similar patients receiving SOC chemotherapy (n&nbsp;=&nbsp;55). The PSA mitigated confounding variables between studies by adjusting for imbalances in the age at diagnosis and start of treatment, sex, duration from diagnosis to most recent treatment, prior allogeneic hematopoietic stem cell transplantation, prior salvage therapy, and number of salvage therapies. Bayesian data augmentation was applied to improve power to 80% with data from a phase 3 blinatumomab study in r/r Philadelphia chromosome\u2013negative ALL. Results: In the PSA, the rate of complete remission or complete remission with partial hematologic recovery was 36% for blinatumomab and 25% for SOC, and this resulted in an odds ratio of 1.54 (95% confidence interval [CI], 0.61-3.89) or 1.70 (95% credible interval [CrI], 0.94-2.94) with Bayesian data augmentation. Overall survival favored blinatumomab over SOC, with a hazard ratio of 0.81 (95% CI, 0.57-1.14) or 0.77 (95% CrI, 0.61-0.96) with Bayesian data augmentation. Conclusions: These results further support blinatumomab as a treatment option for patients with r/r Ph+ ALL

    Long-term survival of patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab

    Get PDF
    Background: Blinatumomab is a CD19 BiTE (bispecific T-cell engager) immuno-oncology therapy that mediates the lysis of cells expressing CD19. Methods: A pooled analysis of long-term follow-up data from 2 phase 2 studies that evaluated blinatumomab in heavily pretreated adults with Philadelphia chromosome-negative, relapsed/refractory B-cell precursor acute lymphoblastic leukemia was conducted. Results: A total of 259 patients were included in the analysis. The median overall survival (OS) among all patients, regardless of response, was 7.5 months (95% confidence interval [CI], 5.5-8.5 months); the median follow-up time for OS was 36.0 months (range, 0.3-60.8 months). The median relapse-free survival (RFS) among patients who achieved a complete remission (CR) or complete remission with partial hematologic recovery (CRh) in the first 2 cycles (n = 123) was 7.7 months (95% CI, 6.2-10.0 months); the median follow-up time for RFS was 35.0 months (range, 9.5-59.5 months). OS and RFS plateaued with 3-year rates of 17.7% and 23.4%, respectively. The cumulative incidence function of the time to relapse, with death not due to relapse considered a competing risk, for patients who achieved a CR/CRh within 2 cycles of treatment also plateaued with a 3-year relapse rate of 59.3%. For patients who achieved a CR/CRh with blinatumomab followed by allogeneic hematopoietic stem cell transplantation while in continuous CR, the median OS was 18.1 months (95% CI, 10.3-30.0 months) with a 3-year survival rate of 37.2%. Conclusions: These data suggest that long-term survival is possible after blinatumomab therapy. Lay Summary: Immuno-oncology therapies such as blinatumomab activate the patient's own immune system to kill cancer cells. This study combined follow-up data from 2 blinatumomab-related clinical trials to evaluate long-term survival in patients with relapsed and/or refractory B-cell precursor acute lymphoblastic leukemia at high risk for unfavorable outcomes. Among patients who achieved a deep response with blinatumomab, one-third lived 3 years or longer. These findings suggest that long-term survival is possible after treatment with blinatumomab

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Distributed sensing with low-cost mobile sensors towards a sustainable IoT

    Get PDF
    Cities are monitored by sparsely positioned high-cost reference stations that fail to capture local variations. Although these stations must be ubiquitous to achieve high spatio-temporal resolutions, the required capital expenditure makes that infeasible. Here, low-cost IoT devices come into prominence; however, non-disposable and often non-rechargeable batteries they have pose a huge risk for the environment. The projected numbers of required IoT devices will also yield to heavy network traffic, thereby crippling the RF spectrum. To tackle these problems and ensure a more sustainable IoT, the cities must be monitored with fewer devices extracting highly granular data in a self-sufficient manner. Hence, this paper introduces a network architecture with energy harvesting low-cost mobile sensors mounted on bikes and unmanned aerial vehicles, underpinned by key enabling technologies. Based on the experience gained through real-world trials, a detailed overview of the technical challenges encountered when using low-cost sensors and the requirements for achieving high spatio-temporal resolutions in the 3D space are highlighted. Finally, to show the capability of the envisioned architecture in distributed sensing, a case study on air quality monitoring investigating the variations in particulate and gaseous pollutant dispersion during the first lockdown of COVID-19 pandemic is presented. The results showed that using mobile sensors is as accurate as using stationary ones with the potential of reducing device numbers, leading to a more sustainable IoT

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte

    Friedmann Equation and Stability of Inflationary Higher Derivative Gravity

    Get PDF
    Stability analysis on the De Sitter universe in pure gravity theory is known to be useful in many aspects. We first show how to complete the proof of an earlier argument based on a redundant field equation. It is shown further that the stability condition applies to k0k \ne 0 Friedmann-Robertson-Walker spaces based on the non-redundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include scalar field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte
    corecore