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Abstract—Cities are monitored by sparsely positioned high-
cost reference stations that fail to capture local variations.
Although these stations must be ubiquitous to achieve high spatio-
temporal resolutions, the required capital expenditure makes that
infeasible. Here, low-cost IoT devices come into prominence;
however, non-disposable and often non-rechargeable batteries
they have pose a huge risk for the environment. The projected
numbers of required IoT devices will also yield to heavy network
traffic, thereby crippling the RF spectrum. To tackle these
problems and ensure a more sustainable IoT, the cities must
be monitored with fewer devices extracting highly granular data
in a self-sufficient manner. Hence, this paper introduces a net-
work architecture with energy harvesting low-cost mobile sensors
mounted on bikes and unmanned aerial vehicles, underpinned
by key enabling technologies. Based on the experience gained
through real-world trials, a detailed overview of the technical
challenges encountered when using low-cost sensors and the
requirements for achieving high spatio-temporal resolutions in
the 3D space are highlighted. Finally, to show the capability of the
envisioned architecture in distributed sensing, a case study on air
quality monitoring investigating the variations in particulate and
gaseous pollutant dispersion during the first lockdown of COVID-
19 pandemic is presented. The results showed that using mobile
sensors is as accurate as using stationary ones with the potential
of reducing device numbers, leading to a more sustainable IoT.

Index Terms—Sustainability, IoT, Smart Cities, Low-cost Mo-
bile Sensors, UAVs, Air Quality Monitoring, COVID-19.

I. INTRODUCTION

The recent progress in the IoT has further enabled Smart

Cities by offering connectivity to a vast number of wireless

devices. However, the instrumented, interconnected, and in-

telligent growth of cities is threatened by batteries that the

IoT devices rely on, which are capacity-limited and prone to

failures driven by external factors. Considering the projected

device numbers, replacement and disposal of batteries will

be labor-intensive and environmentally unfriendly, making the

battery-powered IoT networks impractical and unsustainable.

The second major problem intensified by the proliferation

of IoT is spectrum scarcity. There are two possible solutions

to prevent wireless infrastructure from collapsing: i) efficient
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use of the existing spectrum, often referring to cognitive radio

technologies [1], which is not (commercially) mature yet; ii)

reassignment of the under-utilised/forgotten bands, as has been

done recently for 5G, which is not a long-lasting solution since

the source is limited, and hence will deplete eventually.

Currently, cities are monitored by sparsely located (station-

ary), grid-powered, reference stations, which cannot capture

local variations since the parameters of interest may differ

from street to street in dense urban places. For highly granular

data on air quality, weather, road traffic, spectrum usage,

and noise levels, monitoring must be ubiquitous. However,

being bulky, costly, and stationary hinders such stations’

widespread utilisation. Thus, we need low-cost (both capital

and operational), low-power (battery-free, self-sufficient), and

compact (portable) collaborators providing high spatial resolu-

tions without exacerbating the battery/device/spectrum issue.

Here, low-cost/power mobile sensors stand out by achieving

distributed sensing with seamless penetration into cities, i.e.,

reduced device density, so the spectral impact. If the energy

required by these sensors is provided via energy harvesting

(EH) [2], the environmental impact can also be minimised

by removing batteries and their drawbacks, leading to a

sustainable IoT. The mobile sensors, however, must inter-

operate with reference stations for calibration purposes. A

small number of low-cost stationary sensors are also required

as they can provide long-term observations. Thus, mobile and

stationary sensors complement each other for high spatial (via

mobile) and temporal (via stationary) mapping of the cities.

The idea of using mobile sensors, however, is not entirely

new. Exploiting the public infrastructure, i.e., buses, trams,

trains, as mobile sensors has been reported earlier. There are

also efforts encouraging individuals (e.g., cyclists, drivers)

to join the collaborative efforts on distributed sensing [3].

However, all of these studies focus only on a particular

parameter without optimising the system/network for a lower

device density in a self-sufficient manner. Hence, this paper

introduces a network architecture containing low-cost station-

ary, mobile, and flying sensors (bikes and unmanned aerial

vehicles -UAVs), which extract their energy through EH and

adapt emerging enabling technologies. Based on this, a com-

prehensive analysis of the technical challenges of using low-

cost sensors are specified (Sec. II). That is followed by a case

study on air quality (Sec. III) that took place in two cities of

the UK, Sheffield and Southampton, during the first lockdown

of the COVID-19 pandemic, which eventually validated the

envisioned architecture. Finally, a discussion on open issues

and future research directions are provided (Sec. V).
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Figure 1: Operation overview of the envisioned network architecture illustrated with its components and layers in a Smart City environment.

II. OPERATION OVERVIEW AND TECHNICAL CHALLENGES

This section first outlines the conceptual layers of the envi-

sioned network architecture while introducing the technologies

to be utilised in its operation. Then, it specifies the unique

challenges and the requirements of using low-cost sensors.

A. Network Model and Key Enabling Technologies

As seen in Fig. 1, the network will accommodate stationary

(reference and low-cost), mobile (bikes), and flying sensors

(UAVs) for high-resolution mapping of the cities in the 3D

space. The low-cost stationary sensors will help to increase

the temporal resolutions at strategic locations, undertake cross-

calibration with mobile sensors and reference stations, and

specifically, assess the spatial representativeness of the routes

that mobile and flying sensors took, determining whether they

are redundant, insufficient, or off-track.

The readily available reference stations are installed by (lo-

cal) governments, and their numbers usually vary between 3-5

depending on the city size. For mobile and stationary low-cost

sensors, a volunteering-based public involvement scheme is

required. Here, bikes come to the forefront as the governments

are actively promoting cycling to sustain social distancing as

a COVID-19 countermeasure.1 Hence, the number of bikes

in cities will proliferate, facilitating the distributed sensing

scheme envisioned.

The UAVs, on the other hand, have become cheaper and

easier to manage thanks to recent advancements in the field [4],

which alleviate their adoption by the system. However, techni-

cal challenges like noise, security, and energy usage need to be

studied further. The UAVs will be controlled by city officials,

who also manage the reference stations, over an IoT-enabled

cloud platform. Although the mobile sensors will be dependent

on cyclists’ routes, their on-demand deployment (for specific

needs or re-calibrations) will also be possible.

1UK Government’s new £2 billion package for cycling and walking.
Source: https://www.gov.uk/government/news/2-billion-package-to-create-
new-era-for-cycling-and-walking

The low-cost sensors will create their energy budget through

EH to achieve self-sufficient, maintenance-free, and environ-

mentally friendly operations. In most urban cities, various

EH methods based on ferroelectric, piezoelectric, triboelec-

tric, thermoelectric, electromagnetic, electrostatic, RF, and

photovoltaic generators can be used as a source of energy.

Among those, triboelectric and thermoelectric have often the

highest output power (less than a watt as a peak power).

For mobile ones, the most feasible method is to exploit the

movement of bikes, thereby converting kinetic energy into

electricity. These devices will also be capable of radiative

power transfer/reception to enable collaborative energy sharing

when they are nearby. For the UAVs, multi-source EH re-

charging stations, transferring power via inductive coupling,

will be situated on top of tall buildings. Alternatively, the

UAVs can be self-powered via solar energy.2

Data transfer and connectivity in the network will be per-

formed through a centralised approach. In this, the sensors will

notify an IP-enabled base station/access point (AP), via a low-

power communication protocol (e.g., ZigBee or LoRaWAN),

which will then convey the sensory data to the Cloud platform.

In addition to readily available ones, the re-charging stations

of the UAVs can also be used as APs to allow UAV data to

be acquired and transferred during battery replenishment. In

some scenarios, the UAVs can act as flying base stations as

creating a gateway to the Internet, while also carrying energy

from re-charging stations to the low-cost sensors [5].

The AP-conveyed sensory data will be saved into the

databases/servers of the Cloud. Here, the centralised com-

puting mechanisms will perform transparent data aggregation,

cleaning, and processing, along with Big Data analytics and

machine learning-based forecasting. Alternatively, distributed

edge computing with federated learning can be adopted in the

sensing layer to enable low-cost sensors to make predictions.

The final data will then be transferred to web servers to

be visualised over websites or mobile apps for statistics or

government-led generic and/or personalised recommendations.

2Solar UAV project. Source: stanforduav.org/projects/solar-uav-project/
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Based on the architecture envisioned above, an application-

specific guidance for technology selection is provided in

Fig. 2. As seen, although the wireless networks cover wide

areas with a large number of sensors having low-power con-

sumption and high data rates, they may harm the environment

as they are not made of bio-degradable materials. The diagram

suggests that a LoRaWAN-enabled network mixing mobile and

stationary sensors can reduce the required numbers of devices,

so the environmental (and also spectral) impact while main-

taining good spatio-temporal coverage. Yet, initially EH, then

bio-degradable materials have to be used in sensors/devices.

B. Challenges and requirements of low-cost sensors

• Optimal sensing location, i.e., where to sense: For fine-

grained 3D mapping of the parameters of interest, high

spatial and temporal monitoring is essential. Hence, the

sensors require well-planned deployments regarding popula-

tion density, parameter concentration, and spatial variability

of both population and parameter levels. That needs effi-

cient and dynamic path planning for bikes and UAVs to

avoid overlaps, and hence the waste of scarce resources.

An intelligent mechanism deciding on either sweeping the

whole area or probing only the specific locations of interest,

enabling deep learning-based predictions, is also required.

• Optimal sensing frequency: The energy-constrained low-

cost sensors cannot make perpetual or periodic observations.

Thus, sensory activities often depend on energy availability,

i.e., sensing only when possible. This irregular operation

reduces the temporal resolution of datasets, requiring careful

rethinking while leaving enough room for EH. The added

mobility, on the other hand, makes energy reception even

less predictable, resulting in varying EH output for each

sensor at different times. When a recent reading is reported
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Figure 2: Commercial wireless communication protocols compared
for the main criteria of designing a more sustainable IoT.
p.s. qualitative entries are derived from the authors’ work in this field.

in its vicinity, a sensor may need to skip sensing in the

next power cycle, despite having enough energy, further

highlighting its lack of full control on when to sense. Hence,

a location-based, freshness-aware, collaborative sensing

mechanism is crucial to minimise the overall energy cost

while optimising the sensing frequency of the network.

• Optimal reporting frequency, i.e., when to transmit: The

sensed parameters require pre-processing to detect and

eliminate noise components, anomalies, and erroneous data.

That will improve the monitoring quality and decrease the

energy demands for communication and storage. As wireless

transmission is the most power-consuming task for low-

cost devices, the filtered observations should be further

evaluated to decide whether they need to be transmitted.

Hence, event-driven reporting mechanisms, notifying only

when the parameters change, should be adapted for energy-

efficient data reduction. Nevertheless, the sensors should

send occasional beacon signals to inform the analytics

platforms in the Cloud that they are still operational, which

also indicates no parameter has changed since the last trans-

mission, to preserve data accuracy. Furthermore, depending

on the application, some parameters might be more critical

than others, requiring data prioritisation in queuing, all of

which will optimise the reporting frequency of the network.

• Data heterogeneity: Sensors with varied capabilities will

produce different amounts, frequency, quality, and structure

of data, which have to be flattened out before feeding into

visualisation, recommendation, and prediction systems. Be-

sides, components of this heterogeneous architecture have to

be interoperable with each other, and the network should be

scalable enough to allow flawless addition of new sensors.

• Re-calibration: Although all sensors are pre-calibrated

by manufacturers, their measurements may diverge from

reference stations due to many factors (e.g., sensitivity,

vibration). To ensure high accuracy, low-cost sensors ne-

cessitate regular re-calibrations. That is normally done

manually, i.e., stopping by a reference station for a while to

take concentric measurements. Instead, supervised machine

learning techniques (e.g., multiple linear regression and

generalised additive modelling) can be employed to compare

the results of both devices to calibrate them. The duration

of the calibration, however, is still an unsolved issue. In the

existing studies, low-cost sensors reside in the proximity of

reference stations for a couple of minutes to months, which

will not be realistic for volunteering collaborators. Hence,

quicker and more energy-efficient learning techniques

are needed to optimise the calibration duration of bikes, as

well as the hovering/pending duration of the UAVs.

• Low-cost tracking of time and location: For low-power

devices, a real-time clock might not always be practical

to employ. That requires reliable timekeeping solutions at

low-cost, where researchers usually adopt piggybacking-like

methods to exploit the ongoing transmissions. Alternatively,

capacitor decay or time-intertwined sensing can be used to

keep track of time as accurately as possible [6]. On the other

hand, dynamic location tracking also requires considerably

high power, more than low-cost sensors can afford. Current

solutions fulfil the duty-cycled acquisition of location, which
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is useful in obtaining geo-tagged data at a lower energy

cost. Similarly, accelerometers are employed to use GPS

only when moving, hence reducing power consumption.

Some studies achieve that even without the accelerometers

by using the energy harvested by bikes as an indicator of

movement, triggering a location tracker. In such a way, the

system acquires the localised data only when a displacement

occurs, instead of in a perpetual manner. Hence, the event-

driven tracking of location can be achieved without any

extra hardware cost. For the minimum impact to the low-

cost devices, however, AP-led triangularisation or similar

‘out-of-budget’ solutions should be developed.

• Preserving safety and privacy: For areas with low spatial

and/or temporal resolutions, on-demand sensing can be

fulfilled via bikes or UAVs based on a reward mechanism.

However, sending cyclists to the city’s underbelly may

create risks and unintended consequences, which must be

avoided. Additionally, active location tracking in normal

operation for high-resolution mapping may raise privacy

concerns. Hence, exhaustive safety measures underpinned

by assuring data protection acts have to be put into

practice for individual collaborators.

• Low-effort maintenance: The existing networks mainly

benefit from WiFi APs/routers for data transfer and con-

nectivity. However, this well-established technology has

two major problems: i) frequent password changes, oc-

curring due to security purposes or switching between

broadband providers due to deals.3 This non-deterministic

behaviour causes frequent service disruptions requiring ex-

cessive maintenance, which raise environmental concerns.

ii) limited-range of WiFi, ≈30m in urban areas, resulting

in wireless devices to demand high numbers of APs to

ensure reliable communications. Currently, the number of

WiFi APs has exceeded 350 per km2 in cities, with many

metropolitan areas reaching over 700 per km2.4 However,

the more APs deployed, the more maintenance needed.

Considering also that the RF spectrum is already congested,

the wireless infrastructure must be liberated from the burden

of WiFi APs. To address these issues, migration to licence-

free, low-power, and long-range IoT protocols enabling

wide area networks, i.e., LoRaWAN, is suggested. A couple

of LoRaWAN gateways can provide full coverage over a

medium-size city, as seen in Fig. 3, and hence reduce

(multi-hop) routing-based complexity and data traffic in

networks. Furthermore, LoRaWAN is immune to changes,

i.e., no reconfiguration-driven maintenance costs, as the

amendments can be made remotely. Yet, low data rates,

retrofit challenges, limited air time, and (new) infrastructure

deployment may raise additional issues.

• Crowdsourcing and incentive engineering for efficient

mobile sensing: Crowdsourcing presents an important op-

portunity for realising a large-scale distributed sensing sys-

tem as citizens can contribute readings as they go about their

3According to Ofcom’s Communications Market Report, 17% of
broadband users changed their providers in 2018. Source: https://
www.ofcom.org.uk/research-and-data/multi-sector-research/cmr/cmr-2018

4Small Cell Forum column. Source: https://www.smallcellforum.org/press-
releases/small-cells-outnumber-traditional-mobile-base-stations/

(a) (b)

Figure 3: Only one LoRaWAN gateway providing extensive coverage
over the cities of (a) Sheffield; and (b) Southampton, UK. Source:
https://ttnmapper.org/ (red colour represents the strongest signal).

daily lives (e.g., during commuting or while exercising).

However, it is necessary to design the right incentives,

to ensure that large numbers of participants sign up, that

they continue to engage with the system over long periods

and collect measurements at the right locations and at

the right time. A large range of potential incentives exist

[7], from financial rewards (e.g., an explicit reward per

measurement or the chance to win a prize) to gamification

(e.g., awarding scores, badges, or showing contributors on

a leaderboard). Besides these extrinsic reward mechanisms,

intrinsic motivation can also be a powerful influence on the

participants’ engagement and can be amplified by providing

feedback to them about how their readings provide direct

benefit to the overall system. Choosing the right incentive

mechanism is often challenging and has to be done carefully

since extrinsic and intrinsic motivators often interact with

each other in unexpected ways.

III. AIR QUALITY MONITORING: A CASE STUDY

Exposure to fine particulate matter (PM) of 2.5 µm or less

in diameter (PM2.5) causes cardiovascular and respiratory

diseases, and cancers, which are associated with millions of

deaths globally every year.5 One of the reasons for these is lack

of monitoring, i.e., being unable to take necessary actions, due

to the high cost of reference stations. Low-cost sensors have

been tested and compared with the reference stations, and a

strong correlation has been reported if particular attention is

given to calibrating them. The stationary (reference) sites, or

commercial high-resolution sensors, are a hundred times more

expensive than the equivalent mobile sensor (like the ones

presented in this study), making low-cost mobile sensors more

suitable in achieving wider coverage. However, the complexity

and capacity of the IoT architecture is proportional to the

5WHO’s 2018 Report. Source: https://www.who.int/news-room/fact-
sheets/detail/ambient-(outdoor)-air-quality-and-health



5

number of sensors and the required level of reliability, post-

processing, data security, and transmission methods [3].

Although collecting pollution data using low-cost sensors

has been adopted by several systems, most of them are

stationary, and only a few mobile labs/systems are available

due to the challenges summarised in Sec. II-B. Capturing

pollution data and detecting emission sources, in particular,

require localised monitoring, which can be achieved by a

combination of stationary and mobile sensors.

Air pollution widely varies based on a range of factors,

such as wind conditions, the height of the atmospheric mixing

layer, temperature, landscape, and transboundary transport,

and is susceptible to interactions between different pollutant

types. For PM, the formation of new particles is positively

associated with solar radiation intensity, temperature, and

atmospheric pressure, and negatively associated with relative

humidity [8]. In dense urban areas, the meteorological factors

impacting air pollution vary at different scales, from micro-

to city-scale [9], supporting the need for a higher number of

measurement points to better understand personal exposure.

To achieve that and also evaluate the performance of low-

cost sensors, ≈800 devices of five different brands (AQMesh,

Envirowatch E-mote, EarthSense Zephyr, Aeroqual AQY, and

EMS AirSonde) were deployed in Sheffield [10], [11]. Some

of these sensors were mounted on an electric urban sensing

vehicle also carrying a reference station,6 providing the basis

for our distributed (stationary + mobile) sensing concept.

A similar study took place in Southampton, where Fig. 4

shows the daily mean PM2.5 concentrations measured by low-

cost PM sensors located in three different places (from March

to July 2020). In each location, two Plantower PMS5003

and two Sensirion SPS30 were present. These light-scattering

sensors were used within the enclosure described in [12] and

were part of the network of low-cost PM sensors described

in [13]. The sensors measured data every 1 to 3 s, but for

clarity, the data is presented as daily averages. The sites were

located in a 750m radius from each other, site A at 3m high,

site B at 1.6m, and site C at 4m.

There is a good agreement between the same model sensors

with a Pearson coefficient of r >0.99 on each site. While the

values reported by the two models of sensors are different, es-

pecially during high events of pollution, they also have a good

correlation with inter-model r varying between 0.81and 0.95
There is a little variation between the sites for daily averages

likely due to the mixing of PM over the area. The closest

reference station, Southampton Centre Background Station,

located ≈2 km away from the sites, recorded similar variations

for daily PM2.5 concentrations. For a period of time ≤1 h, the

sensors present more variability. The Pearson coefficients with

the reference station, r between 0.94 and 0.96 for daily means

and between 0.74 and 0.88 for hourly means, are obtained. The

slopes of the linear regression between the sensors and the

reference station for hourly data varied importantly between

the different months analysed: from 1.56 and 0.81 (Plantower

and Sensirion, respectively) in March down to 0.83 and

0.44 respectively in August. These results highlight that while

6The MOBIUS Project. Source: https://urbanflows.ac.uk/mobius/

these sensors give a suitable representation of pollution trends,

the actual values they report have a large margin of error,

typically > 50%. Bulot et al. [12] showed that these two

models have an intramodel variability of 12 to 31%, and that

they respond differently depending on the composition of the

aerosol. Other studies showed that they are susceptible to high

relative humidity levels among other factors [3].

To test the suitability of these sensors for mobile sensing

on a bike, they were tested under external vibration, which

varies vastly from participant to participant and depends on

bike type and road conditions. We examined the effects of

vibration on these sensors by using a shaker, where the

sensors were subjected to base excitation. Since the frequency

and amplitude depend on road conditions, a sine wave at

frequencies equal to 8-54Hz with maximum 10mm displace-

ment was considered to test both sensors. Higher PM values

were recorded, which might be due to more particles moving

inside the sensors, where the light scattering method was

used for calculating the size of particles. When the results

were compared with stationary sensors, Pearson coefficients

of r > 0.92 and r > 0.78 for Sensirion and Plantower were

found, respectively. These results were encouraging; hence,

the sensors were placed on a bike to be tested on actual roads

(blue polygons in Fig. 3 show the routes taken in case studies).

The mobile sensing device shown in Fig. 5(a) contains two

PM2.5 sensors (Sensirion SPS30 and Plantower PMS5003),

one CO2 (SCD30 from Sensirion), one combined NO2

and CO (Grove Multichannel Gas Sensor), one temperature

and humidity sensor (Adafruit BME280), one 3-axis MEMS

accelerometer (ADXL345 From Sparkfun), one GPS unit

(Adafruit Ultimate GPS Breakout), and one LoRa Radio

Transceiver (Adafruit RFM95W). Due to the rainy weather

and COVID-19 related travelling restrictions, recorded data are

sporadic, i.e., once a day between sites A and C (Fig. 5(b))

between 5 PM to 7 PM and from March to July 2020. The

cyclist stopped at the location corresponding with each data

point for five minutes. In Fig. 4, the average data collected by

the sensors (sampling every 8s) on the bike were compared

with the stationary sensors (sampling every 1s) only for the

duration in which the cyclist was stopped at sites A, B, and C.

Fig. 4 shows the measurements of mobile and stationary

sensors. These two cases have the Pearson coefficients of r >

0.86, r > 0.94, and r > 0.96 (for Sensirion) and r > 0.89, r >

0.94, and r > 0.94 (for Plantower) respectively at sites A, B,

and C, showing good agreement. Differences exist due to bike

movement and the different altitudes of the sensors from the

bike. Given the good agreement between mobile and stationary

sensors, we conclude that mobile sensors can complement the

stationary ones in covering larger areas, thereby achieving high

spatial resolutions at a lower cost and environmental impact.

Fig. 4 also shows that the PM2.5 levels during April and

early June (during the height of the first COVID-19 lockdown

in Southampton), are considerably greater than other months

examined in this study. These results are consistent with

the values measured in Sheffield,7 which are against the

7The Urban Flows Observatory, Sheffield. Source: https://sheffield-
portal.urbanflows.ac.uk/uflobin/ufportal/
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Figure 4: Daily mean PM2.5 concentrations were measured by three stationary low-cost PM monitoring stations (sites A to C). The lines
represent the daily means collected by the stationary sensors. The points indicate the averages collected by the sensors on the bike and the
stationary sensors at peak time based on local traffic report (between 5 to 7 PM) for days that cyclist stopped at each station for five minutes.

expectations that anticipated a decrease due to COVID-19

restrictions. The high PM2.5 levels, compared to the averages

for the same periods in the previous years, can be attributed to

a range of factors including abnormal weather conditions, the

provenance of the masses of air from the continent, an increase

of residential biomass burning, i.e., wood-burning and garden

waste, and farming activities that have proceeded as normal

during the lockdown [14].

(a) (b)

Figure 5: (a) The low-cost mobile sensor attached on the bike’s
handlebar; (b) stationary and mobile sensors at sites A, B, and C in
Portswood area, Southampton, UK. The cycling route was between
A to C from the main roads. The colours on the right-hand side show
the typical traffic in the area where sensors are located and the cyclist
roams. Red is heavy, orange is medium, and green is no traffic.

IV. FUTURE RESEARCH DIRECTIONS

The low-cost sensors used in the case study highlight

some of the challenges: (1) the accuracy of these sensors is

questionable and not straightforward to quantify, but expected

to improve as the technology they employ progresses; (2)

their susceptibility to other environmental factors supports the

need for a platform enabling to sense a range of parameters;

and (3) the adoption of calibration methods insuring a known

level of accuracy, the frequency of re-calibration, and the need

for cost-efficient calibration strategies. The good agreement

between the stationary and mobile sensors observed here is

encouraging as mobile sensors could be calibrated when they

pass in the neighbourhood of reference stations, and then be

used to calibrate low-cost stationary sensors, which could then

also be used to calibrate the mobile ones passing nearby in

an automated way. However, to achieve a sustainable mobile

sensing paradigm, a low-power sensing design should adopt a

competent energy harvester. It can also benefit from wireless

power transfer on-board with the mobile network [15].

The network of sensors proposed here can then produce

data that can be integrated with reference grade data, satellite

imagery, and models to increase the understanding of the

spatio-temporal characteristics of pollution over wide areas.

The sensors can be used to determine the impact of interven-

tion measure on pollution in the case of road closures, and

facilitation of active transport or clean air zones.
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Novel algorithms that can effectively relocate the sensors

in the desired locations are essential to increase the sensing

coverage. Furthermore, game-theoretic strategies deriving op-

timal mobility for low-cost sensors and targets from their own

perspectives or decentralised and localised algorithms, namely

Optimal Geographical Density Control (OGDC), must be im-

plemented to determine the optimum number of sensors. The

nonlinear relationships between the coverage, connectivity, and

energy consumption derive these optimisation problems, which

need further investigation for energy-efficient task scheduling

and hence the best performance achievable.

AI-assisted, context-aware source recognition and elimina-

tion must be performed with the support of photos, videos,

and sound recordings. Furthermore, neural engines should

be trained using historical data for the spatial fitting of the

areas with no or insufficient measurements. That is also

useful for making short-term predictions in consideration

of external factors, such as the variations in temperature

and relative humidity, as well as vibrations. Mobile sensors

should provide information on noise pollution generated by the

UAVs and allow them to choose the appropriate routes. The

collected/generated information should be made accessible

to both authorities and citizens to allow them assessing the

potential risks and future hazards, contributing to mitigation

efforts, and promoting healthier living environments.

Following Sec. II and the outcomes of the case study, our

next efforts will focus on injecting low-cost flying sensors into

the envisioned network architecture to achieve high spatio-

temporal mapping in the 3D space. We will also make all

sensors EH-capable, deploy the UAV re-charging stations,

adopt the afore-mentioned technologies, and thus evolve this

concept to a complete solution for cities. To also show that the

envisioned architecture is applicable to any domain, we will

perform distributed spectrum sensing, instead of air quality

monitoring, to assess how the ever-changing urban landscape

affects the performance of wireless networks in cities.

V. CONCLUSIONS

This paper introduces a network architecture comprising

low-cost sensors to achieve high spatio-temporal monitoring

in cities with a lowered impact on spectrum and environment.

The technical challenges encountered when using low-cost

stationary, mobile, and flying sensors are specified. The en-

abling technologies to be adopted and the specific require-

ments to be met are also highlighted. To show the potential

advantages of using such architecture, a case study on air

quality monitoring with stationary (reference, low-cost) and

mobile sensors (mounted on bikes) is presented. The data

collected during the case study showed that low-cost stationary

sensors could provide similar results with reference stations,

promoting the idea of low-cost sensing. That was followed by

the assessment of low-cost mobile sensors, which illustrated

conforming trends with its stationary counterparts, paving the

way for high spatio-temporal resolutions with lower spectral

and environmental impact by reducing the required device

numbers, thereby leading to a more sustainable IoT.
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