3 research outputs found

    Determining the Binding Between SAGA Subunits and Spliceosomal Components

    Get PDF
    Proper gene regulation is vital to the health and development of an organism. Determining the relationship between splicing, transcription, and chromatin structure is vital for understanding gene regulation as a whole. There have been previous studies linking these elements pairwise; however, no evidence exists for a direct link between all three. Recent data shows that splicing components of the U2 small nuclear ribonucleic protein (snRNP) co-purify with Spt-Ada-Gcn5-acetyltransferase (SAGA), a highly conserved transcriptional co-activator and chromatin modifier. We hypothesize that SAGA binds with splicing components through a multi-protein binding surface with certain core components based on preliminary yeast two-hybrid data. Here, we examine the specific binding partners between SAGA and splicing components utilizing the yeast two-hybrid system in spt7Δ Saccharomyces cerevisiae as a validation for the preliminary yeast two-hybrid performed, producing recombinant proteins through sequence and ligation-independent cloning (SLIC) and Baculovirus transfections to obtain purified proteins, and co-immunoprecipitation (co-IP) to detect specific protein-protein interactions from recombinant proteins. Yeast two-hybrid results reveal that Spt7 is necessary for the transcription of reporter genes used in this assay. Therefore, this assay cannot validate previous results or detect false positives. Currently, recombinant proteins are being produced to perform co-IPs to test direct protein interactions. The results from these experiments will demonstrate the type of binding between SAGA subunits and splicing factors and provide direct evidence of a link between all three of the elements of gene regulation

    The genome of the sea urchin Strongylocentrotus purpuratus.

    No full text
    International audienceWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
    corecore