74 research outputs found

    Reprint of: B Cells in Chronic Graft-versus-Host Disease

    Get PDF
    AbstractChronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell–directed agents that may be effective for prevention or treatment of cGVHD. Some B cell–directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell–directed therapies for cGVHD will now be evaluated in clinical trials

    Clinical Applications for Biomarkers of Acute and Chronic Graft vs. Host Disease

    Get PDF
    Acute and chronic graft versus host disease (GVHD) are serious complications of allogeneic hematopoietic cell transplantation (HCT). The complex pathophysiology of these disease processes is associated with immune system activation, the release of cytokines and chemokines, and alterations in cell populations. The blood levels of specific protein and cellular levels in patients with GVHD have correlated with the development, diagnosis, and prognosis of GVHD. Here we review the most promising biomarkers for acute and chronic GVHD with clinical relevance. The utility of GVHD biomarkers in clinical care of allogeneic HCT recipients needs to be proven through clinical trials, and potential approaches to trial design are discussed

    National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune Dysregulation and Pathobiology Working Group Report

    Get PDF
    Immune reconstitution after hematopoietic stem cell transplantation (HCT) beyond 1 year is not completely understood. Many transplant recipients who are free of graft-versus-host disease (GVHD) and not receiving any immunosuppression more than 1 year after transplantation seem to be able to mount appropriate immune responses to common pathogens and respond adequately to immunizations. However, 2 large registry studies over the last 2 decades seem to indicate that infection is a significant cause of late mortality in some patients, even in the absence of concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, there are not enough long-term follow-up clinics able to measure even basic immune parameters late after HCT. Second, the correlation between laboratory measurements of immune function and infections is not well known. Third, accurate documentation of infectious episodes is notoriously difficult. Finally, it is unclear what measures can be implemented to improve the immune response in a clinically relevant way. A combination of long-term multicenter prospective studies that collect detailed infectious data and store samples as well as a national or multinational registry of clinically significant infections (eg, vaccine-preventable severe infections, opportunistic infections) could begin to address our knowledge gaps. Obtaining samples for laboratory evaluation of the immune system should be both calendar and eventdriven. Attention to detail and standardization of practices regarding prophylaxis, diagnosis, and definitions of infections would be of paramount importance to obtain clean reliable data. Laboratory studies should specifically address the neogenesis, maturation, and exhaustion of the adaptive immune system and, in particular, how these are influenced by persistent alloreactivity, inflammation, and viral infection. Ideally, some of these long-term prospective studies would collect information on long-term changes in the gut microbiome and their influence on immunity. Regarding enhancement of immune function, prospective measurement of the response to vaccines late after HCT in a variety of clinical settings should be undertaken to better understand the benefits as well as the limitations of immunizations. The role of intravenous immunoglobulin is still not well defined, and studies to address it should be encouraged

    Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development

    Get PDF
    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT

    Combined CD4 T-Cell and Antibody Response to Human Minor Histocompatibility Antigen DBY After Allogeneic Stem-Cell Transplantation

    Get PDF
    Antibody responses to HY antigens in male recipients are frequent after transplantation of stem cells from female donors (Miklos et al., Blood 2005; 105: 2973; Miklos et al., Blood 2004; 103: 353). However, evidence that this B-cell immunity is accompanied by T-cell responses to the cognate antigens is scarce. Here, we examined T- and B-cell responses to DBY antigen in a male patient who received hematopoietic stem cells from a human leukocyte antigen-identical female sibling

    Alphavirus Replicon Particle Vaccine Breaks B Cell Tolerance and Rapidly Induces IgG to Murine Hematolymphoid Tumor Associated Antigens

    Get PDF
    De novo immune responses to myeloid and other blood-borne tumors are notably limited and ineffective, making our ability to promote immune responses with vaccines a major challenge. While focus has been largely on cytotoxic cell-mediated tumor eradication, B-cells and the antibodies they produce also have roles in anti-tumor responses. Indeed, therapeutic antibody-mediated tumor cell killing is routinely employed in patients with hematolymphoid cancers, but whether endogenous antibody responses can be incited to blood-born tumors remains poorly studied. A major limitation of immunoglobulin therapies is that cell surface expression of tumor-associated antigen (TAA) targets is dynamic and varied, making promotion of polyclonal, endogenous B cell responses appealing. Since many TAAs are self-antigens, developing tumor vaccines that enable production of antibodies to non-polymorphic antigen targets remains a challenge. As B cell responses to RNA vaccines are known to occur, we employed the Viral Replicon Particles (VRP) which was constructed to encode mouse FLT3. The VRP-FLT3 vaccine provoked a rapid IgG B-cell response to this self-antigen in leukemia and lymphoma mouse models. In addition, IgGs to other TAAs were also produced. Our data suggest that vaccination with RNA viral particle vectors incites a loss of B-cell tolerance that enables production of anti-tumor antibodies. This proof of principle work provides impetus to employ such strategies that lead to a break in B-cell tolerance and enable production of broadly reactive anti-TAA antibodies as potential future therapeutic agents for patients with hematolymphoid cancers

    The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease

    Get PDF
    Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: • Summarize the current state of the science regarding pathogenic mechanisms of chronic GVHD and critical knowledge gaps. • Develop working hypotheses/overriding concepts for chronic GVHD development. • Define the usefulness of current preclinical models to test working hypotheses and ultimately discover and develop new therapeutic strategies. • Identify shortcomings of preclinical models, and define criteria for the creation of additional models to address these limitations. This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD

    An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD

    Get PDF
    B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this “NOTCH2-BCR axis” in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity

    Phase I/II Trial of Dose-Escalated Busulfan Delivered by Prolonged Continuous Infusion in Allogeneic Transplant Patients

    Get PDF
    Intensive chemotherapy or chemotherapy plus irradiation and allogeneic stem cell transplantation can be curative for patients with hematologic diseases. Reduced intensity transplants can also achieve cure, and result in less treatment related mortality but higher relapse rates. Thus, optimizing the conditioning regimens used in allogeneic transplantation remains an important goal. We conducted a Phase I/II trial to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT) of a continuous infusion of busulfan over 90 hours in conjunction with fludarabine followed by allogeneic related or unrelated donor transplant. Fifty-four patients with advanced hematologic malignancies were enrolled on this study. The MTD was identified as a 24 hour area under the curve (AUC) of approximately 7095 uMmin which represents a 43% increase over the standard total daily AUC dose of 4800 uMmin given by intermittent schedules. DLTs at doses over 8000 uMmin were identified as a desquamative skin rash and mucositis. No dose-related increase in hepatic, pulmonary or other organ toxicies were seen while efficacy appeared to be improved at higher dose levels. Continuous infusion busulfan with intermittent fludarabine provides an alternative treatment strategy that is generally well tolerated and permits an increase in total busulfan dose with encouraging efficacy
    • …
    corecore