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A B S T R A C T

Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in
allogeneic hematopoietic cell transplantation recipients and amajor obstacle to improving outcomes. The biology
of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms
responsible for the initiation and progression of disease is fundamental to developing effective prevention
and treatment strategies. The goals of this task force review are as follows:
• Summarize the current state of the science regarding pathogenic mechanisms of chronic GVHD and crit-
ical knowledge gaps.

• Develop working hypotheses/overriding concepts for chronic GVHD development.
• Define the usefulness of current preclinical models to test working hypotheses and ultimately discover
and develop new therapeutic strategies.

• Identify shortcomings of preclinical models, and define criteria for the creation of additional models to
address these limitations.
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This document is intended as a review of our understanding of chronic GVHD biology and therapies re-
sulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and
treat chronic GVHD.
Published by Elsevier Inc. on behalf of the American Society for Blood and Marrow Transplantation. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION
Relapse of underlying malignancy and the development

of chronic graft-versus-host-disease (GVHD) remain themajor
obstacles to improving outcomes following allogeneic he-
matopoietic cell transplantation (HCT). Chronic GVHD remains
the prevailing cause of nonrelapse mortality in patients sur-
viving longer than 2 years after allogeneic HCT, negatively
influencing both quality of life and long-term outcomes. Un-
fortunately, the incidence and severity of chronic GVHD have
increased over the last decade despite advances in clinical
practice [1,2]. Thus, although many GVHD prevention regi-
mens have reduced acute GVHD, chronic GVHD amelioration
has been less affected [3-5], with exceptions seen with the
use of antilymphocyte antibodies and high-dose cyclophos-
phamide in the early post-transplantation period [6-9]. Unlike
acute GVHD, which is driven almost exclusively by the acti-
vation of donor T cells and the release of proinflammatory
cytokines [10], the immunopathophysiology of chronic GVHD
is more complex. Chronic GVHD involves multiple, distinct
interactions among alloreactive and dysregulated T and B cells
and innate immune populations, includingmacrophages, den-
dritic cells (DCs), and neutrophils, that culminate in the
initiation and propagation of profibrotic pathways.

Over the past decade, the National Institutes of Health’s con-
sensus criteria for the diagnosis and scoring of chronic GVHD
have brought consistency to the terminology andmethods for
reporting assessment findings in HCT recipients [11,12]. This
effort has been successful in standardizing the language and
documentation used by clinicians to describe clinical mani-
festations of disease [13-15], yet the precise mechanisms
responsible for the onset and progression of chronic GVHD
remain elusive. In this paper, we review the current under-
standing of the immunology of chronic GVHD and provide
guidance for pursuing several focused areas of research over
the next decade.

CLINICAL MANIFESTATIONS OF CHRONIC GVHD
Chronic GVHD presents with the following key clinical

manifestations: mucocutaneous, myofascial, pulmonary, and
“other,” affecting essentially any organ system in the body. Char-
acteristic features may include chronic inflammatory changes
that can be relatively acellular involving ocular [16], oral, esoph-
ageal, skin, joint and fascial, and genital [12] tissues. Progression
to clinically significant fibrosis involvingmultiple organs in the
integumentary, musculoskeletal, aerodigestive, gastrointesti-
nal, cardiorespiratory, reproductive, and peripheral nervous
systems occurs in severely affected individuals. Rare but severe
clinical presentations of chronic GVHD also can include poly-
serositis (with pericardial and pleural effusions) or polymyositis
with severe muscle weakness and elevated muscle enzyme
levels [17].

Because scoring is based on the degree of tissue involve-
ment and functional impairment and not on the underlying
biology, clinical disease classifications are unlikely to help
translational scientists complete association analysis of large
datasets. This is particularly complicated by the strong cor-
relations between chronic GVHD and other late complications,

including metabolic syndrome, renal impairment, infec-
tions, and the development of second cancers [18-20].

Standardizing Clinical Disease Nomenclature to Facilitate
Interpretation of Biological Studies of Chronic GVHD

The transplantation biology field seeks approaches to es-
tablish clinical tolerance, defined as a specific lack of immune
activity to donor and host tissues with preservation of re-
sponses to foreign antigens, such as invading pathogens [21].
Tolerance could be achieved through mitigation of T cell re-
activity, a process that typically occurs through 2mechanisms,
central (thymic) tolerance and peripheral (extrathymic) tol-
erance [22]. Known requirements for the induction or
description of tolerance after HCT in the clinic are lacking.
Chronic GVHD is the net result of an imbalance between rel-
atively higher immune effector mechanisms that cause
inflammation and disease and lower inhibitory (regulatory)
mechanisms that may maintain tolerance (Figure 1).

The interpretation of biological studies of chronic GVHD is
complicated by variability in the classification of differentmani-
festations of disease. A rational approach for grouping patient
samples is required for studies of human immune cell func-
tion. Deciphering the biology of clinical chronic GVHD and
interpreting correlative biology studies conducted in affect-
ed patients is both important and challenging because of the
grouping of diverse patient subsets (eg, established chronic
GVHD with newly diagnosed de novo with overlap, controls
with/without previous acute GVHD or with/without subse-
quent chronic GVHD) that customarily occurs in the context
of clinical investigation. A single nomenclature and compari-
sons among similar clinical groups should be used (Table 1).
Moreover, the biology of chronic GVHD is likely different in
newly diagnosed patients (at the onset of active disease) com-
pared with that observed later in the disease course. Thus,
grouping all chronic GVHD patients together in biological anal-
yses should be avoidedwhenever possible. Instead, we propose
grouping chronic GVHD patients according to the presumed
underlying biology that consists of inflammatory, immune
dysregulatory (functionally nontolerant), or fibrotic/sclerotic
manifestations (Table 2), and noting the duration of the disease.

Similarly, definitions of nomenclature regarding the terms
“alloreactivity” and “autoreactivity” require consistent use. In this
paper, we refer to all donor T cell responses as alloreactive in
nature when donor cells respond to recipient cells and
autoreactivewhen donor immune response occur against donor
cells, such as platelets or red blood cells. Both responses are part
of the spectrum of chronic GVHD, and the term “autoantibod-
ies”hasbeenused todescribe tissue reactive alloantibodies. These
definitions have caveats given thepossible contribution of donor-
derived antigen-presenting cells (APCs) to the T cell activation
that contributes to chronic GVHD [23,24].

Factors Influencing the Development of Chronic GVHD and
the Interpretation of Biological Studies

A number of clinical variables are associated with the de-
velopment of chronic GVHD andmay influence the underlying
pathophysiology of the disease. These include, but are not
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limited to, donor type, stem cell source, conditioning regimen
intensity, underlying diagnosis (myelodysplastic syndrome
or chronic myelogenous leukemia), in vivo T cell depletion
by alemtuzumab and antithymocyte antibodies, use of post-
transplantation cyclophosphamide, sex mismatch, HLA
mismatch, and evidence of prior cytomegalovirus and Epstein-
Barr virus infection [1,25-36]. It is also possible that,
paradoxically, treatment with and subsequent withdrawal of
commonly used calcineurin inhibitors may contribute to the
development of chronic GVHD by blocking thymic T cell de-
velopment and thymic and peripheral T cell tolerance [37-39].
Additional factors include the ages of the donor and recipi-
ent. Although early reports supported the hypothesis that
increasing donor age was associated with higher rates of
chronic GVHD, perhaps owing to higher numbers of memory
T cells [27], recent data would suggest that it has a lesser effect
[40-42]. Possibly more important is the fact that younger re-
cipients, especially children, have a functional thymus that
may have a significant influence on the development of
chronic GVHD and could explain the lower rate of chronic

GVHD in younger patients [43,44]. We discuss the role of the
thymus in chronic GVHD, although its role in adult recipi-
ents likely is much less prominent.

A 3-PHASE MODEL FOR CHRONIC GVHD BIOLOGY
Experimental studies have underscored the consequences

of inflammation early after HCT from conditioning and ac-
tivation of donor T cells. Vascular endothelial cell (EC)
activation and injury promotes the migration of donor
immune cells into target organs. Thymic injury and dysfunc-
tion have deleterious effects on pathways of central tolerance.
Depletion of regulatory T cells (Tregs) or reduction of their
suppressor function by calcineurin inhibition further impairs
tolerance induction by peripheral mechanisms. Propaga-
tion of tissue injury by dysregulated donor lymphocyte
populations and aberrant repair mechanisms set the stage for
fibroblast activation, collagen deposition, fibrosis, and irre-
versible end-organ dysfunction. Figure 2 proposes a 3-phase
model for the initiation and development of chronic GVHD
that involves early inflammation and tissue injury (phase 1),

Figure 1. Pathways to functional tolerance or chronic GVHD. Several factors significantly influence the immunologic landscape that evolves after allogeneic
HCT and is ultimately responsible for (1) normal immune reconstitution, including the restoration of protective, anti-infective host immunity and the rees-
tablishment of expanded T cell and B cell repertoires; (2) functional tolerance with preservation of graft-versus-tumor effects; or (3) immune dysregulation
and alloreactivity that drives the development of chronic GVHD. These factors include, but are not limited to, the following: conditioning regimen intensity;
donor and host parameters, including graft source, donor type, HLA match, age, and sex; the contribution of both mature lymphocytes infused at the time of
HCT and those generated from the donor stem cell graft and educated in thymic remnants of the host; and the efficiency (or lack thereof) of early and late
regulatory mechanisms.
MA, myeloablative conditioning; RIC, reduced-intensity conditioning; NMA, nonmyeloablative conditioning; +GVL, presence of graft-versus-leukemia activity.

Table 1
GVHD Status Definitions and Grouping for Biological Studies Performed in Patients After Allogeneic HCT

Definition Alloreactive and
Autoreactive Effector
Mechanisms

Regulatory
Mechanisms

Previous
Acute
GVHD

Previous
Chronic
GVHD

Off Immune
Suppression
>3 mo

Physical Manifestations
of Acute and/or
Chronic GVHD

Normal IgG Level
(Patient Not
Anergic)

Resolved GVHD (immune
tolerance)

+ + ± ± + − +

No GVHD (“normal” immune
reconstitution)

− − − − + − +

Active late acute GVHD + − ± − − + ±
Active chronic GVHD, new
onset (within 1 mo) and
established

+ − ± + − + ±

Inactive chronic GVHD + + ± + + + ±

GVHD indicates graft-versus-host disease; HCT, hematopoietic cell transplantation; +, present; −, absent; ±, may or may not be present.
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Table 2
Biological Subgrouping of Key Clinical Manifestations of Chronic GVHD

Manifestations Inflammatory
(Phase 1)

Immune Dysregulatory
(Phase 2)

Fibrotic/Sclerotic
(Phase 3)

Mucocutaneous Oral lichen planus-like erythema/
ulcers; erythematous skin rashes;
conjunctival erythema; genital/vaginal
erythema, lichen planus-like or
ulcerations

Chronically infected ulcers Salivary dysfunction; limitation of
mouth opening; lacrimal dysfunction;
cutaneous sclerosis; labial
agglutination; vaginal stenosis;
phimosis

Lung Pulmonary inflammation (clinical or
subclinical)

Chronic lymphocytic bronchiolitis; chronic
interstitial pneumonitis; recurrent
sinopulmonary infections

Bronchiolitis obliterans syndrome;
interstitial fibrosis

Myofascial Extremity edema, fasciitis Myositis; myasthenia gravis; chronic
inflammatory demyelinating
polyneuropathy

Subcutaneous deep fibrosis; joint
contractures

Liver Cholestatic or hepatitic GVHD Autoimmune hepatitis Advanced liver GVHD with periportal
fibrosis, ductopenia

Gastrointestinal Colitis, epithelial cell injury Chronic colitis, malabsorption Esophageal web, stricture formation
Hematopoietic system Neutrophilia; elevated platelet counts;

anemia of chronic disease
Lymphopenia; immune neutropenia or
thrombocytopenia; eosinophilia;
autoimmune hemolytic anemia

Marrow failure/fibrosis

Immune system Acute-phase reactants Infections, especially with encapsulated
bacteria;
hypogammaglobulinemia or
hypergammaglobulinemia; autoimmune
phenomena (renal, thyroid, polyserositis,
other)

Functional asplenia; opportunistic
infections

GVHD indicates graft-versus-host disease.

Figure 2. Biological phases of chronic GVHD. A 3-step model for the initiation and development of chronic GVHD is proposed that involves early inflamma-
tion and tissue injury (phase 1), dysregulated immunity (phase 2), and aberrant tissue repair often with fibrosis (phase 3)*. In phase 1, numerous soluble,
inflammatory proteins, including cytokines and TLR agonists, are released in response to cytotoxic agents, infections, and acute GVHD. Together with cellular
components of the innate immune system, these inflammatory stimuli result in diffuse, nonspecific damage to numerous organs and the vascular endothe-
lium. Endothelial cell activation and injury set the stage for the migration of donor immune cells into secondary lymphoid organs, including the spleen and
lymph nodes, and subsequently into GVHD target tissues. Phase 2 is characterized by the activation of effector populations in the adaptive immune system,
including T cells, B cells, antigen-presenting cells, and NK cells with compensatory inhibition by regulatory populations including Tregs, Bregs, NKregs, and
possibly Tr1 cells. The response appears to be both antigen-specific (MHCs and miHAs) and non–antigen-specific. Thymic injury and dysfunction engendered
during phase I and phase II has deleterious effects on pathways of central tolerance. In Phase 3, propagation of tissue injury occurs by dysregulated donor
lymphocyte populations in the context of aberrant repair mechanisms. This in turn promotes the release of profibrotic mediators, leading to macrophage and
fibroblast activation, collagen deposition, fibrosis, and irreversible end-organ dysfunction. *It should be noted that although these are usually sequential events,
patients in phase 1 can often go both to phase 2 and phase 3 simultaneously or sometimes only to phase 2 without phase 3.
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chronic inflammation and dysregulated immunity (phase 2),
and aberrant tissue repair often with fibrosis (phase 3). Strat-
egies focusing on (1) specific depletion or functional inhibition
of mature, alloreactive, T cells in the stem cell graft; (2) pre-
serving or restoring thymic function and restoration of Treg
numbers and functional capacities; and (3) mechanisms of
dysregulated inflammation and repair, which lead to fibro-
sis, may successfully reduce the incidence and severity or halt
the progression of chronic GVHD. Such approaches will
promote the establishment of immune tolerance with pres-
ervation of antiinfective and antitumor immunity after HCT.

Phase I: Effect of Early Post-Transplant Inflammation and
Tissue Injury on Chronic GVHD
Role of the adaptive and innate immune system responses in
chronic GVHD

Acute GVHD is initiated and sustained by innate immune
system pathways thatmediate the response tomicrobial prod-
ucts and molecules released by cellular damage [45-48], in
cooperation with the adaptive (T and B cell) system. Trigger-
ing inflammatory pathways in scavenger macrophages,

plasmacytoid andmyeloid DCs, B cells, and neutrophils results
in the production of key mediators that enhance antigen pre-
sentation and direct the commitment of naïve T cells into
differentiated Th1/Tc1 and Th17/Tc17 T cell effector lineages
(Figure 3). For example, Toll-like receptor (TLR) pathways are
triggered through receptors on the plasma membrane (TLR2,
TLR4) and in endosomes (TLR3, TLR7/8, TLR9). Deleting TLR
or NOD-like receptor (NLR) pathways or blocking their activ-
ity with small molecule inhibitors significantly reduces acute
GVHD [49-52]. Similar mechanisms appear to be in place for
chronic GVHD. Hyperresponsiveness to TLR9 agonists has been
described in B cells at the onset of chronic GVHD [53], but re-
sponses to a TLR9 agonist are muted in certain B cell subsets
[54]. In addition, agents that inhibit TLR7, TLR8, and TLR9 sig-
nalingwithin the lysosome have shown variable in vivo activity
in murine and human chronic GVHD [55-57].

TLR pathway activation induces IFNα production via tran-
scriptional interferon response factors (IRFs) 3 and 7 along
with IL-6 and TNFα through NFκB. IFNα can drive Th1/Tc1
commitment [58], resulting in IFNγ production. IFNα and IFNγ
in turn can induce chemokines (CXCL9, CXCL10, CXCL11) that

Figure 3. Phase 1: Early inflammation and tissue injury. Diagram of damage-induced activation of the innate immune system resulting in recruitment of Th1/
Tc1 and Th17 cells to a tissue site. Ongoing damage to epithelial and connective tissue releases damage-associated molecular patterns (DAMPs), including
RNA, DNA, chromosomal HMGB1, extracellular matrix materials, ATP, and uric acid. RNA and DNA can be taken up into endosomes as part of immune com-
plexes with anti–nuclear material autoantibodies (triggering TLR3, TLR7, and TLR9). ECM and HMGB1 bind to plasmamembrane TLR2, TLR4, and RAGE complexes.
All of these TLR pathways trigger IRF transcription factors, inducing IFNα, and TNFα and IL-6 through NFkB. NLRP3 inflammasome formation can be trig-
gered by ATP (via P2XR7), resulting in IL-1β production. IFNα, and IL-1β plus IL-6, can induce T cell differentiation into Th1/Tc1 and Th17. IFNα and IL-17 also
induce chemokines (CXCL9/10 and CCL20), which recruit Th1 and Th17 cells into tissues from the blood. Cytolytic attack by these effector T cells continues a
cycle of tissue damage and release of DAMP molecules.
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recruit Th1/Tc1 cells into tissue sites of inflammation and
other factors that enhance the processing and presentation
of host antigens [59-63].

The assembly of inflammasome complexes containing the
adapter protein ASC (apoptosis-associated speck-like protein
containing C-terminal caspase recruitment domain [CARD])
and caspase I regulates antigen presentation and migratory
capacity of DCs and lymphocytes, respectively [64], causing
loss of myeloid-derived suppressor cell function during acute
GVHD induction [65,66]. Inflammasomes also catalyze the
production of active IL-1β and IL-18 from their proforms. IL-
1β, in combination with IL-6, induces differentiation of
pathogenic Th17 cells in humans [67,68].

Three lines of evidence suggest that similar immune path-
ways play a role in the initiation and persistence of chronic
GVHD. First, donor T cells activated early post-transplantation
appear to contribute to andmay sustain chronic GVHD [69,70].
Second, tissue damage incurred during acute GVHD may
persist, as evidenced by progressive onset of chronic GVHD or
overlap syndrome. Even restricted areas of mild cell damage
(eg, waistband pressure, varicella zoster virus reactivation) can
trigger localized sclerotic cutaneous chronic GVHD [71]. Th1/
Tc1 and Th17 cells are the dominant T cell effectors in lichenoid
infiltrates of the skin andmucosa [62,72-77] (Figure 3). These
cells can result in extensive tissue destruction, leading to release
of damage molecules (eg, ATP, RNA and DNA, HMGB1) that
trigger the TLR, NLR, and inflammasome pathways that prop-
agate inflammation [78-82]. The IL-33 receptor ST2/IL1RL1,
now recognized as a biomarker for both acute and chronic
GVHD, is also released in response to cell damage [83-87].
Third, gene expression in circulating monocytes from clini-
cal samples reveals that multiple IFN-inducible genes and
receptors for pathogen-associated molecular patterns and
damage-associated molecular patterns (known as pattern
recognition receptors [PRRs]) become up-regulated at the
time of onset of chronic GVHD, remaining elevated in pa-
tients with active disease [88]. These IFN-inducible and PRR
genes were comparably up-regulated in patients with cuta-
neous lichenoid infiltrates and in thosewith extensive sclerotic
involvement, providing a common operant mechanism across
the spectrum of chronic GVHD manifestations [88]. The use
of a neutralizing type I IFN receptor (IFNAR) antibody pre-
vented skin and vascular changes in a sclerotic chronic
GVHD murine model (B10.D2→BALB/c), and a similar strate-
gy reduced Th1 activation and collagen production in a

phase I clinical trial for patients with for systemic sclerosis
[89,90].

In addition, the IFNγ-inducible chemokines CXCL9, CXCL10,
and CXCL11, responsible for CXCR3-expressing Th1 lympho-
cyte and natural killer (NK) cell recruitment into tissue, have
been identified as plasma biomarkers for chronic GVHD. These
chemokines are up-regulated at diagnosis and remain el-
evated in severely affected patients [73,85,91-94]. In particular,
CXCL9 was recently found to be part of a biomarker panel
that significantly correlated with the diagnosis and severity
of chronic GVHD once established and had predictive power
at day 100 for patients who would develop chronic GVHD
within the subsequent 3 months [85]. IFNγ enhances the pro-
duction of another recognized chronic GVHD biomarker, the
homeostatic B cell activating factor (BAFF), and may contrib-
ute to B cell activation in chronic GVHD [95,96]. Blockade of
IFNγ signaling through the use of Janus activated kinase (JAK)-
1/2 inhibitors is as effective in chronic GVHD as in the acute
form of the disease [97,98], although alteration of non-IFN
signaling pathways regulated by JAK1/2 also may contrib-
ute to the response.

Contradictory data regarding the role of IFNγ exists in
humans, where microsatellite polymorphisms within the first
intron appear to be associated with decreased IFNγ produc-
tion and higher chronic GVHD rates [99]. Recent studies also
have demonstrated a correlation of low plasma IFNγ con-
centrations with the onset of chronic GVHD in humans [100].
Collectively, these observations suggest that inhibiting TLR
and NLR pathways with approaches that target the adap-
tive immune system may represent a novel and effective
approach for preventing or treating chronic GVHD (Table 3).

Endothelial damage and activation
Vascular ECs are the first host-derived cells to be exposed

to the donor immune system and are the primary barrier
separating donor and recipient tissue. The passage of donor
cells across the vascular endothelium into inflamed tissues
is tightly controlled; leukocyte transmigration through an EC
monolayer is a complex, orchestrated process that involves
intimate contact between the 2 cell types [101,102]. The
precise mechanisms operating during GVHD development
have yet to be fully defined, however. If vascular ECs express
and present cognate antigen to alloreactive donor T cells, they
can be susceptible to direct immune attack as well. The re-
sulting EC activation and injury can facilitate the passage of

Table 3
Potential Agents for Blockading Effects of Innate Immune Response

Target Agent Effects Species Reference(s)

TLR4 NI-0101 TLR4-specific antibody Mouse [323]
TLR7, TLR9 AT791; E6446 Small-molecule inhibitor Mouse [324]
MyD88 ST2825 Small-molecule inhibitor Mouse [325]

Imatinib Blocks TLR agonist effect Mouse [326]
P2X7R A-438079

CE-224,535
Selective P2X7R antagonist Mouse, human [327]

NLRP3 Pirfenidone Inhibits NLRP3 expression Mouse [328]
Glyburide Blocks NLRP3 activity Mouse [329]

IL-1β Rilonacept IL-1R1 fusion protein Human
Canakinumab Anti–IL-1β Human [330]
VX-765, parthenolide Caspase-1 inhibitor Human, mouse [331,332]

IFNα Anti-IFNα Reduces BAFF, CXCL9/10 Human [333,334]
JAK Baracitinib, ruxolitinib,

INCB018424, CYT387 (JAK1,2)
Blocks JAK/STAT signaling of multiple cytokines, including IFN (IFNα/β,
IFNγ), gp130 family (IL-6), IL12/IL23, and γc family (IL-2, IL-4, IL-7, IL-15)

Human, mouse [60,97]

Tofacitinib (JAK1,2,3) Blocks JAK/STAT signaling of multiple cytokines, including γc family (IL-2,
IL-4, IL-7, IL-15)

Human, mouse [335]
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donor-derived cellular and soluble effectors from the blood
and into recipient tissues.

Diffuse EC damage is implicated as a direct contributor to
multiple complications occurring after allogeneic HCT
[103-108]. Several in vitro and in vivo systems have also dem-
onstrated that ECs respond to stimuli such as irradiation,
lipopolysaccharide, TNFα, and cytotoxic lymphocytes (CTLs),
all of which are involved with inflammation early post-
HCT, by either becoming activated or undergoing programmed
cell death [107,109,110]. Involvement of EC activation and
injury in the development of chronic GVHD is inferred by clin-
ical and experimental data. Intimal arteritis similar to allograft
vasculopathy and extensive loss of microvessels have been
observed in the skin of chronic GVHD patients [111]. The latter
was reported in direct association with perivascular infiltra-
tion of donor-derived CTLs, loss of ECs in the vessel lumen,
and increased plasma vonWillebrand factor levels [112]. Al-
thoughmicrovessel loss was not compensated for by vascular
remodeling, it appeared to be reversible if systemic GVHDwas
successfully treated. In animalmodels, EC activation and apop-
tosis in the setting of intense lymphocytic infiltration during
acute GVHD are observed in advance of epithelial injury of
the oral mucosa and lungs of mice, 2 key chronic GVHD target
organs [113,114]; thus, microvascular loss and resultant tissue
ischemia may contribute to the target organ fibrosis charac-
teristic of chronic GVHD, as well as the occurrence of late
cardiovascular disease reported after allogeneic HCT [18-20].
Elucidation of mechanisms that influence EC vulnerability to
immune-mediated injury during chronic GVHDmay uncover
novel approaches to prevent the initiation and progression
of disease and subsequent end-organ damage and dysfunction.

Effector T cells and chronic GVHD biology
In vivo T cell depletion using lymphocyte antibody therapy

or a short, early post-transplantation course of high-dose cy-
clophosphamide each has been shown to reduce the incidence
and severity of chronic GVHD [6-8,32,115-117]. These data
suggest that chronic GVHD is dependent, at least in part, on
mature donor T cells infused with the hematopoietic stem
cell graft [118,119]. A subset of mature donor T cells is spe-
cific for histocompatibility antigens uniquely expressed by
recipient cells.

The first suggestion that the antigen specificity of the T
cells involved in acute GVHD differed from those of chronic
GVHD came from the analysis of clonal T cells in rodent HCT
models. Whereas all of the T cell clones frommice with acute
GVHD were specific for restricted histocompatibility anti-
gens of the host, the majority of T cell clones frommice with
chronic GVHD were specific or restricted by histocompat-
ibility antigens shared by the donor and recipient strains [120].
Although clonal T cells have been found in HCT recipients with
acute GVHD and in some cases their antigen specificity has
been determined, clonal T cells have not been consistently
identified in patients with chronic GVHD [121].

Activated, clonally expanded donor T cells differentiate into
distinct functional subsets, including Th/Tc1, Th/Tc2, and Th/
Tc17 cells (Figure 3 and 4). Their effector mechanisms include
the production of both cytokines and cytolytic enzymes [122]
that contribute to the generation of GVHD. Of the CD4 T cell
subset, Th1 cells are the most important for inducing acute
GVHD through inflammatory cytokines, including IFNγ and
TNFα, whereas Th2 cells and cytokines are drivers of chronic
GVHD. This Th1/Th2 paradigm has been challenged and

Figure 4. Phase 2: Chronic inflammation and dysregulated immunity. The production and release of inflammatory stimuli enhance interactions between antigen-
presenting cells and donor-derived lymphocyte populations, including CD4+ T cells, CD8+ T cells, and B cells. Some of the responses are antigen-specific, and
some derive from nonspecific inflammatory pathways. Activation of donor lymphocytes results in the generation of effector populations. The production of
signature cytokines, BAFFs, and autoantibodies, along with chemokine receptor–ligand interactions, are part of the aberrant immune response contributing
to inflammation and the recruitment of effector and regulatory cells into peripheral target tissues. The difference between the presence and absence of chronic
GVHD appears to be related to a predominance of either dysregulated effector mechanisms when active chronic GVHD is present versus regulatory popula-
tions when chronic GVHD is absent or has resolved. The relative contributions of each remain to be determined.
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refined, however [99,100,123,124]. In addition, the role of Th17
cells has been assessed in the context of GVHD (reviewed in
[125]). The Th17 pathway of differentiation is distinct from
that of Th1 or Th2 CD4+ T cell development. Th17 differen-
tiation requires TGFβ1 and IL-6, is enhanced by IL-1β and
TNFα [126,127], and is dependent on the transcription factors
retinoid-related orphan receptor (ROR)γt and RORα [128]. This
lineage of CD4+ helper cell development is characterized by
the production of IL-17A, IL-17F, IL-22, and IL-21. A possi-
ble role for IL-17–producing CD4+ (Th17) cells and CD8+ (Tc17)
cells alone or in combination with other effector subtypes was
noted in several preclinical mouse models of both acute and
chronic GVHD [129-132]. IL-17 is mechanistically linked to
skin and lung GVHD in mice [133-135]. In the setting of
chronic GVHD, the contribution of Th17/Th1 cells to tissue
injury is regulated in part by signal transducer and activa-
tor of transcription (STAT)-3 [136] and IL-12/IL-23 [137]
signaling along with programmed death 1 (PD-1)/PD1 ligand
1 (PDL-1) interactions [138]. Elevated Th17 cell numbers have
been found in patients with acute and chronic GVHD and are
associated with disease status [139]. These Th17 cells in-
cluded both IFNγ− and IFNγ+ subpopulations, and the IFNγ+

Th17 cells migrated into GVHD lesions in the skin and liver.
In support of these findings, the number of Th17-secreting
CD8+ T cells was increased in the skin (but not the periph-
eral blood) in patients with lichenoid chronic GVHD, but not
in patients with scleroderma-like chronic GVHD [72].

The realization that Th17 CD4+ T cells play a central role
in GVHD development suggests that they might be attrac-
tive targets for prophylactic or therapeutic intervention.
However, the applicability of targeting IL-17 is influenced by
a report suggesting that infusion of IL-17−/− donor T cells into
lethally irradiated major histocompatibility complex (MHC)-
mismatched recipients led to enhanced acute GVHD as a result
of robust Th1 expansion and IFNγ production by donor cells
[140]. However, other studies have demonstrated that block-
ing Th17 cell differentiation using RORγt knockout mice as
donors mitigated acute GVHD and altered T cell trafficking
to GVHD target organs while maintaining robust engraft-
ment and graft-versus-leukemia (GVL) effects [141,142].
Similar approaches can be considered to determine the ef-
fectiveness of preventing or treating chronic GVHD. Other
cytokines produced by Th17 cells (ie, IL-21 and IL-22) also
may contribute to Th17-mediated pathology, suggesting ad-
ditional targets for prevention or therapy. The finding that
IL-21/R signaling and IL-2γc cytokines are required for disease
initiation and maintenance in a multiorgan system chronic
GVHD model that includes bronchiolitis obliterans syn-
drome (BOS), suggests that IL-21 may be an optimal target
for intervention, possibly obviating the need for targeting IL-
17 escape mechanisms [143,144].

Phase 2. Chronic Inflammation, Dysregulated Immunity,
and the Development of Chronic GVHD

Following allogeneic HCT, the production and release of
inflammatory stimuli enhance interactions betweenAPCs and
donor-derived lymphocyte populations, the generation of ef-
fector and regulatory populations and their ultimate
recruitment to peripheral target tissues (Figure 4). Immune
dysregulation leading to chronic GVHD results from the pre-
dominance of donor-derived effector immune mechanisms
that cannot be controlled by donor- or host-derived regula-
tory immune responses. This occurs in part because standard
calcineurin-based GVHDprophylaxis, although active in pre-
venting acuteGVHD, is ineffective in preventing chronicGVHD

inmost patients. Several lines of investigation have assessed
whether dysregulated immunity following allogeneic HCT
relates to a failure of central or peripheral tolerance mecha-
nisms. The contribution ofmultiplemechanisms is supported
by recent reports examining transcriptional profiles of pe-
ripheral bloodmononuclear cells of HCT recipients to elucidate
molecular changes associated with “operational tolerance”
[145,146]. These studies defined operational tolerance as the
successful discontinuation of all immunosuppressive agents
and sustained absence of any clinicalmanifestations of acute
or chronic GVHD. Nontolerant HCT recipients had ongoing
chronic GVHD requiring continued systemic immunosup-
pressive therapy. Differential expression of several candidate
genes, including those involved inNK cell cytotoxicity, antigen
presentation, lymphocyte proliferation, and apoptosis, were
identified in tolerant and nontolerant patients [145,146].

Other regulatory mechanisms also play important roles
in establishing a balance with T cell effector cells. As we
discuss below, decreased regulatory functions of B cells may
contribute to chronic GVHD in some patients [147]. The
CXCR3+ subpopulation of CD56+bright cytokine-producing NK
cells (NKregs) is also associated with the development of
chronic GVHD [93]. Murine models have identified CD4+ in-
variant NKT cells (iNKT) as key regulators of Treg expansion
and function in vivo [148-150]. In HCT recipients, the number
of Tregs in the stem cell product was inversely correlated with
the subsequent development of acute GVHD [151,152].

Thymic dysfunction, lack of immune tolerance, and evolution
of chronic GVHD

The thymus is the primary organ for the development of
T cells and tolerance induction. Most of what is known re-
garding how bone marrow (BM)-derived, lymphoid-skewed
precursor cells travel to the thymus and differentiate into naïve
T cells in a tightly regulated stepwise process involving pro-
liferation, differentiation, and positive and negative selection
has been elucidated usingmurine systems (reviewed in [153]).
Positive selection is regulated predominantly by cortical
thymic ECs (cTECs) and results in MHC restriction of naïve
T cells. Negative selection, the process whereby naïve T cells
are deleted when encountering self-antigen presented within
the thymus, was once believed to occur only in the medulla
under the control of medullary TECs (mTECs) and DCs.
However, recent studies indicate that thymic B cells and cTECs
can contribute to negative selection as well [154]. An im-
portant feature of thymic negative selection is the expression
of tissue-restricted peripheral self-antigens by mTECs. The
expression of (most) tissue-restricted self-antigens is under
the control of the autoimmune regulator (Aire) transcrip-
tion factor, which is expressed by mTECs [155].

Twenty-five years ago, it was demonstrated that acute
GVHD can attack the thymus, resulting in the generation
of donor T cells with antihost reactivity owing to defective
negative selection (failed central tolerance) [156]. This
seminal observation is supported by more contemporary
mouse studies [157-164]. In preclinical murine models
[155-160,165-167] and in patients [168], the thymus is iden-
tified as a target organ of chronic (and acute) GVHD, resulting
in a loss of thymic output and T cell selection processes. Both
mTECs and thymic DCs are targeted by donor-derived T cells
[159,161,165,167,169], which may have profound effects on
negative selection. In mouse models, acute GVHD of the
thymus results in loss of Aire-positive mTECs and a de-
crease in the diversity of Aire-dependent, tissue-restricted
peripheral self-antigens that result in negative selection,
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especially those antigens involved in chronic GVHD, such as
skin, liver, salivary glands, lungs, eyes, and gastrointestinal
tract [155]. This effect reduces the likelihood of central tol-
erance induction and allows for the development of donor-
derived T cells with specificity (or cross-reactivity) for chronic
GVHD target antigens [155]. Additional studies in preclini-
cal models support the concept that alloimmunity during
acute GVHD may impair effective peripheral T cell toler-
ance, leading to the emergence of self-reactive donor T cells
capable of recognizing nonpolymorphic tissue antigens or
commensally derived antigens presented by either donor or
host APCs [69,70,170,171].

Whether peripheral or central pathways preferentially con-
tribute to the development of donor CD4+ and CD8+ T cells
responsible for the induction of multiorgan chronic GVHD has
been explored previously [136,159,161]. In one model, CD8+

T cells generated chronic GVHD only through thymic-
dependent (central) mechanisms. In contrast, CD4+ T cells
produced chronic GVHD by alteration of either central or pe-
ripheral tolerance pathways. In this model, short-term, in vivo
anti-CD4+ T cell depletion therapy reduced thymic damage,
subsequent autoreactivity, and resultant multiorgan chronic
GVHD. Regeneration of thymic architecture and function after
damage (such as caused by conditioning regimen and acute
GVHD) decreases with age, potentially explaining why the in-
cidence of chronic GVHD is generally lower in pediatric HCT
recipients compared with adult HCT recipients [172].

The role of Tregs in chronic GVHD development
Tregs are CD4+ T cells that express high levels of CD25 (IL-

2Rα needed to form a high-affinity IL-2 receptor) and FoxP3
(the master transcription factor regulator). Tregs are vital for
immune homeostasis [173], and diminution of Treg numbers
or function results in autoimmune disease [174,175]. CD4+

Tregs significantly contribute to the effectiveness of GVHD pro-
phylaxis, and their efficacy can be influenced by medications
used in the post-transplantation setting [176-178]. They are
important in the establishment and maintenance of both
central and peripheral immune tolerance after allogeneic HCT
[179,180], and post-HCT Treg recovery is a critical element
of immune reconstitution [181]. Early after HCT, Tregs are
derived primarily frommature memory Tregs in the stem cell
product. Several clinical studies have suggested that adop-
tive transfer of in vitro expanded Tregs early after stem cell
infusion can reduce the incidence and severity of acute GVHD
[182-184].

The role of CD4+ Tregs in chronic GVHD development
appears to be more complex. Increased, normal, and de-
creased numbers of Tregs have been reported at the onset
of chronic GVHD [185-189]. Following HCT, Treg reconstitu-
tion is altered and is dependent on various factors, including
thymic repopulation and recovery, “homeostatic” Treg pro-
liferation, subsequent survival of regenerated activated Tregs,
and the choice and use of immunosuppressive drugs. Antigen-
specific proliferation and conversion of conventional T cells
into Tregs may contribute to Treg recovery [190,191]. Recent
studies have examined possible mechanisms that lead to Treg
deficiency during chronic GVHD [192-194]. An imbalance
between Tregs and T cell effectors, with too few Tregs, results
in a skewed thymic production of naïve T cells toward con-
ventional T cells [194]. Naïve Treg proliferation is also impaired
for prolonged periods after HCT [194]. Similar to the situa-
tion in healthy adults, post-HCT Treg reconstitution is
dependent primarily on homeostatic expansion of memory
Tregs. Although memory Tregs proliferate at high levels after

HCT, these cells develop short telomeres and have increased
susceptibility to apoptosis [195]. When high levels of pro-
liferation cannot bemaintained, Treg deficiency occurs, which
can impair tolerance induction and is associated with sig-
nificant clinical manifestations of chronic GVHD [194].

Although Tregs are hypoproliferative in vitro, murine
studies have documented their rapid expansion after adop-
tive transfer in HCT recipients [196]. Treg depletion from the
stem cell graft exacerbates acute GVHD in mice, whereas
supplemental Treg infusion can prevent disease develop-
ment [197-202]. Adoptive therapy with ex vivo expanded
Tregs can be used to augment the Treg pool [203-206], correct
a relative Treg deficiency, and promote peripheral immune
tolerance in vivo [207-211]. Tregs are not detectable in the
peripheral blood beyond 2 weeks postinfusion in HCT re-
cipients [183], however, possibly due to the suppression of
IL-2 production by Tregs, the use of calcineurin inhibitors, or
migration out of the blood into tissues. Murine models have
identified IL-2 as the primary homeostatic cytokine that regu-
lates CD4+ Treg development and maintains the Treg pool in
vivo [212-215]. Genetic deletion of IL-2 or CD25 leads to Treg
deficiency and autoimmunity [216]. Low-dose IL-2 can be ad-
ministered safely for prolonged periods later after allogeneic
HCT, when inflammation has partially subsided, with clini-
cal benefit inmice [217] and patients with chronic GVHD. This
approach results in the selective expansion of CD4+ Tregs in
vivo without promoting the expansion of effector T cells or
exacerbation of GVHD [218-220]. Chronic augmentation of
systemic IL-2 at physiological concentrations increases thymic
production of naïve Tregs along with the proliferation of naïve
and memory Tregs [221]. In this context, bcl2 expression is
increased, thereby reducing Treg susceptibility to apopto-
sis. Despite these changes in Treg homeostasis, IL-2 alone
might not be sufficient to increase the functional Treg pool,
and a combination of low-dose IL-2 or novel IL-2 formula-
tions with adoptive Treg therapy may be required to provide
long-lasting recovery of immune tolerance after HCT [222].

B cell dysregulation and chronic GVHD
In the non-HCT setting, high avidity interactions of B cell

receptors (BCRs) with autoantigens in the BM results in de-
letion of autoreactive B cells [223]. This does not occur in
patients with chronic GVHD who develop antibody re-
sponses to minor histocompatibility antigens (miHAs) after
allogeneic HCT [224-226] (Figure 4). Although in several
murine models, alloimmunity is required for the develop-
ment of chronic GVHD [227] and transferable autoimmunity
[170,228], B cells and the production of autoantibodies appear
to play key roles in some types of chronic GVHD [229]. More-
over, the frequent production of autoantibodies by patients
with chronic GVHD suggests that a loss of B cell tolerance is
operative [230]. Although a number of autoantibodies, in-
cluding anti-nuclear antibodies (ANAs), anti–double-stranded
DNA (anti-dsDNA), and platelet-derived growth factor re-
ceptor (PDGFR)-α, have been found in associationwith chronic
GVHD [231-234], these findings have been variable. An ex-
ception is antibodies directed against Y-chromosome–
encoded epitopes (H-Y antibodies) in male recipients of stem
cell grafts from female donors who develop chronic GVHD
[224,225,235].

Both BCR signaling and BAFF play key roles in determin-
ing B cell fate and survival. Aberrant activation of B cells relies
on the presence of pivotal drivers of BAFF and BCR signal-
ing after HCT [236,237]. Recently identified signaling pathways
that are dysregulated during chronic GVHD have led to
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clinical trials using targeted agents to inhibit these path-
ways [238-241]. As in the non-HCT autoimmune disease
setting, both the availability of BAFF and the affinity of avail-
able antigen for the BCR determine the autoreactive potential
of the peripheral B cell pool [242]. High BAFF levels early after
HCT in combination with failure of normal checkpoints vital
to B cell tolerance allow persistence and propagation of donor
B cells reactive to a variety of host antigens that can secrete
disease-causing alloantibodies and autoantibodies. Multi-
ple groups have shown that chronic GVHD is closely associated
with aberrant BAFF levels [96,234], an activated B cell phe-
notype, and aberrant BAFF/B cell ratios [239,243-245]. B cells
with polyreactive BCRs that should be deleted in the periph-
ery if B cell tolerance is achieved are potentially rescued by
sufficient amounts of BAFF in patients with chronic GVHD
[243]. Excessive BAFF levels in chronic GVHD have been as-
sociated with increased proportions of antigen-experienced
and transitional-like B cell subsets [246,247]. These CD27+ B
cells, including an IgD+CD38Hi extrafollicular B cell subset, are
likely promoted by excessive amounts of BAFF, but how these
cells are generated andwhether they are pathological remains
unknown [243]. Whether these B cell subsets are present in
lesional tissue and have the ability to target sites of disease
remains an area of active interest [248]. Regulatory B cells
(Bregs) [249] and T follicular helper (Tfh) cells [144,250] may
contribute to aberrant B cell function and represent impor-
tant nodes of B cell and T cell cooperativity in chronic GVHD
pathogenesis.

Potential mechanistic links between BCR activation and
BAFF in disease microenvironments require further study in
murine models. For example, studies in patients are almost
always based on peripheral blood B cells, whereas murine
studies preferentially use splenic B cells. Furthermore, the ex-
pression of B cell surface antigens differs between mice and
humans [251]. In mice, germinal center (GC) reactions can
be critical for chronic GVHD development [144,252] and may
produce clues to pathogenic mechanisms operative in the de-
velopment of clinical disease as described below. Patients with
chronic GVHD are often characterized by functional
hyposplenism, although patients without chronic GVHD can
also have splenic dysfunction [253-255]. Secondary lym-
phoid organs are difficult to study in patients, and
reconstitution of follicular B cells in lymph nodes is known
to be delayed and atypical in patients with chronic GVHD
[256]. A paucity of total CD27+ memory and IgD− post-GC B
cell numbers in the peripheral blood [257], in associationwith
increased infections, corroborates a failure of typical anti-
microbial GC reactions in patients with possible support by
aberrant B cells. Although robust GC formation appears to be
critical for disease initiation, a recent study revealed that GC
disruption is important for disease maintenance [258]. In ad-
dition to potential GC and non-GC extrafollicular reactions
in secondary lymphoid organs, the BMmay represent a crit-
ical site in the genesis of chronic GVHD [259-261]. Additional
experiments addressing these possibilities are warranted.

Why chronic GVHD patients produce alloreactive B cells
and antibodies but not clinically relevant antimicrobial re-
sponses highlights an important gap in our knowledge about
B cell pathobiology. Loss of antibody titers to microbes and
muted B cell responses to microbial pattern recognition re-
ceptors like lipopolysaccharide potentially contribute to this
GVHD-associated immune deficiency [262]. Whereas ex vivo
assays have shown that B cells are constitutively activated
in chronic GVHD, B cell lymphopenia and humoral immune
deficiency are distinctive characteristics of chronic GVHD

[144,238-241]. In this regard, patients with chronic GVHD
appear to be similar to patients with common variable
immune deficiency given their shared propensity toward B
cell autoreactivity/alloreactivity in the face of profound
humoral immune deficiency [230,263]. The apparent incon-
gruence between increased B cell survival, activation, and IgG
production and poor functional antimicrobial responses
remains to be addressed.

Finally, B cells can have regulatory properties that sup-
press rather than initiate chronic GVHD. Bregs have been
recently identified as a novel B cell population associated with
chronic GVHD development [54,147,249]. Emergence of a pop-
ulation of CD19+CD21low B cells by day 100 correlates with the
subsequent development of chronic GVHD [264], specifically
in patients who have BOS [265] and hypogammaglobulinemia
[266]. Proportions of this B cell subset may have predictive
value with respect to responsiveness to extracorporeal
photopheresis [267].

Step 3: Aberrant Repair, Propagation of Fibrosis, and
Progression of Chronic GVHD
Wound healing, repair, and fibrosis

The immune system plays a central role in the regula-
tion of inflammation, tissue repair, and recovery. These
processes are essential for host defense, wound healing in re-
sponse to epithelial damage, and the maintenance of tissue
homeostasis. Dysregulated immunity and aberrant tissue
repair can lead to scarring or fibrosis [268], defined as the
excessive accumulation of components of the extracellular
matrix (ECM) in and around inflamed or damaged tissue.
Pathological fibrosis results from chronic infection, persis-
tent immune activation, and/or impaired regenerative
responses [269]. Progressive loss of normal tissue architec-
ture and organ function is the hallmark of fibrotic disorders.
Immunologic mechanisms resulting in excessive collagen de-
position and the development of fibrosis are complex.
Activation of ECM-producing myofibroblasts is a common
feature of all fibrotic disorders regardless of the initiating event
[268]. Acute inflammatory responses often initiate the fi-
brotic cascade. Early endothelial damage activates coagulation
pathways and results in the release of chemotactic factors that
recruit immune cells to sites of tissue injury.

Synergistic interactions between components of innate and
adaptive immunity contribute to evolving tissue inflamma-
tion and ultimately regulate the differentiation of fibroblasts
into activated, ECM-producing myofibroblasts (reviewed in
[268]). Myeloid cells secrete soluble factors (TNFα, IL-1β, and
IL-6), identified as important drivers of fibrosis. Tissue mac-
rophages are also key regulators of fibrosis and amajor source
of TGFβ (perhaps the most significant molecule involved in
fibrinogenesis), and PDGF. They are also major producers of
both matrix metalloproteinases (MMPs) as well as their en-
dogenous suppressors, tissue inhibitors of MMPs (TIMPs)
[270,271]. In addition to TGFβ, classically activated (M1) mac-
rophages secrete proinflammatory cytokines, including TNFα
and IL-1β, which can activate fibroblasts and contribute to
ECM generation. Alternatively activated (M2) macrophages
are a distinct subset of cells that have been shown to sup-
press inflammation and contribute to both profibrotic and
antifibrotic processes [267,272].

The contribution of the adaptive immune response to fi-
brosis is well recognized. The recruitment of activated Th2
and Th17 CD4+ T cells also promotes fibrosis primarily through
the secretion of IL-13 and IL-17, respectively. In contrast, the
role of Th1 cytokine IFNγ is more controversial, exhibiting both
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profibrotic and antifibrotic effects. Several experimental
systems have revealed a role for B cells in the development
of fibrosis that characterizes some forms of chronic GVHD
[144,240,252,273]. Interactions between donor-derived T cells
and B cells in secondary lymphoid tissues initiates a cascade
of events resulting in the generation of alloreactive/
autoreactive B cells and the dysregulated production of
alloantibodies/autoantibodies, activation of monocytes and
macrophages, injury to ECs and epithelial cells, and release
of soluble factors, including TGFβ. Fibroblast stimulation leads
to matrix production and collagen deposition, culminating
inmultiorgan fibrosis and dysfunction (Figure 5). Finally, Tregs
also contribute to wound healing through the production of
IL-10, TGFβ, and amphiregulin. Tregs suppress inflamma-
tion, but their effects on fibrosis are variable and may depend
in large part on the role of other T effector populations. Tregs
may exacerbate TGFβ-induced fibrosis but suppress Th2- and
Th17-driven disease [268,271].

Normal tissue repair mechanisms activated in response
to an injurious event work to dampen the associated inflam-
matory response, limit cellular damage, reestablish tissue
integrity and homeostasis, and ultimately expedite function-
al wound healing as opposed to progressive scarring [274,275].
Like the inflammation engendered during chronic GVHD,
wound healing exemplifies a highly dynamic interface
between innate and adaptive immunity [276]. The healing
of damaged tissue must be tightly controlled as an inflam-
matory response ends. As noted, nonresolving inflammation
or exuberant or excessive repair can lead to fibrosis, scar-
ring, and organ dysfunction. Complex interactions among
neutrophils, macrophages, stromal cells, coagulation path-
ways, lipid mediators, and ECM molecules must occur in a

synchronized fashion in distinct locations [277,278]. Mecha-
nisms contributing to the resolution of inflammation are now
understood to be biochemically distinct from traditional anti-
inflammatory pathways [276,278]. Although some aspects of
these pathways may be conserved, others are likely to be
organ-specific.

Deposition of an ECM is paramount to the initiation and
evolution of the reparative process. For example, the estab-
lishment of a provisional matrix to replace lost or damaged
tissue is followed by transition to a more “mature” ECM that
is ultimately remodeled to replicate functional tissue
[279,280]. Importantly, the ECM plays an active role in modu-
lating cell–ECM interactions during these changes. Functional
repair, irrespective of organ involvement, is predicated in large
part on reestablishment of the epithelial barrier and vascu-
lar remodeling [275,279]. The latter is paramount to
maintaining blood flow and establishing a continual supply
of oxygen and nutrients to damaged tissues [275,280]. In this
context, epithelial and endothelial regeneration are funda-
mental to the restoration of vascular integrity and tissue
architecture and organ function [279].

It is conceivable that these reparative pathways are op-
erative when the inciting alloimmune stimulus and
accompanying inflammation that characterizes chronic GVHD
is controlled and immune tolerance is restored. The precise
mechanisms involved in tissue regeneration and repair after
successful treatment of chronic GVHD have yet to be rigor-
ously studied or understood, however, and this remains a
significant knowledge gap in both basic biology and clinical
medicine. Similarly, determining whether the tissue destruc-
tive effects of chronic GVHD have fully resolved following the
development of immune tolerance is also challenging.

Figure 5. Phase 3: Aberrant tissue repair and pathways of antibody-mediated fibrosis. The contribution of B cells to the development of chronic GVHD has
been recently highlighted in several experimental systems. One pathway emphasizes interactions between donor-derived T cells and B cells in secondary lym-
phoid tissues, including the spleen peripheral lymph nodes. The generation of alloreactive or autoreactive B cells and the dysregulated production of alloantibodies
and autoantibodies initiates a cascade of events that involves activation of monocytes and macrophages along with endothelial and epithelial injury. The release
of soluble factors, including TGFβ, and fibroblast stimulation characteristic of aberrant tissue repair result in collagen and matrix production and deposition,
culminating in target organ fibrosis and dysfunction.
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Normalization of laboratory values, inflammation, and organ
function in the liver and kidney; restoration of epidermal and
mucosal integrity in the skin and oral tissues; resolution of
end organ symptomatology in the gut, eyes, and lungs; and
stabilization or improvement of lung function all may be con-
sidered in the decision of whether to discontinue treatment
with immunosuppressive medications.

Mechanisms of pulmonary fibrosis
Declining lung function is a significant complication in the

months and years after successful allogeneic HCT [15,281,282].
Two forms of chronic lung disease are commonly observed
in this context: obstructive lung disease (OLD), otherwise
known as BOS, and restrictive lung disease (RLD) [283-287].
The most recognized form of chronic GVHD of the lung is BOS
[281,282,288]. In each scenario, collagen deposition and the
development of fibrosis either in the peribronchiolar (OLD)
or interstitial (RLD) space contribute to the resultant pat-
terns of lung dysfunction [283]. The complex pathophysiology
that characterizes lung fibrosis after HCT is poorly under-
stood and represents the most significant gap in the current
knowledge of this spectrum of chronic GVHD [20,289,290].
This limitation stems from the lack of correlative data ob-
tained from afflicted HCT recipients, along with the paucity
of suitable HCT animal models for either the restrictive form
or the obstructive form of chronic lung injury.

Until recently, most of the knowledge of the pathogen-
esis of OLD/BOS was based on observations made in lung
allograft recipients and from data generated in murine het-
erotopic tracheal transplantation models. In this context,
fibrosis developing during chronic GVHD of the lung is be-

lieved to involve, at least in part, a persistent or recurrent
antigenic stimulus, which elicits chronic inflammation and
aberrant repair [283]. This exaggerated reparative response
involves the recruitment of donor-derived immune cells, dif-
ferentiation of fibroblasts into myofibroblasts, inappropriate
ECM deposition, and disruption of the alveolar capillarymem-
brane and/or obliteration of the terminal bronchioles [280].
Destruction of epithelial cells, ECs, and basement mem-
brane integrity culminates in the uniform loss of tissue
architecture, progressive fibrosis, and ultimately, irrevers-
ible loss of function. Removal of the chronic inflammatory
stimulus may lead to resorption/remodeling of the ECM. Sub-
sequent reepithelialization and reendothelialization can result
in reestablishment of the alveolar capillary membrane and
the terminal bronchiolar architecture and restoration of
normal function [280]. Although alloreactive effector cells are
required to initiate chronic GVHD in mice and patients, their
role in the initial damage to the alveolar or bronchiolar ep-
ithelium and the subsequent progression to chronic
pulmonary injury have not been thoroughly elucidated. For
example, an early robust inflammatory phase might not be
a prerequisite for subsequent fibrosis; persistent epithelial
damage and subsequent “cross-talk” among epithelial cells,
inflammatory cells, and fibroblasts may be sufficient for the
development of fibrotic lung disease [271,291].

Conceptually, the triphasic model of chronic GVHD out-
lined above can be applied to the development of pulmonary
dysfunction after HCT [284] (Figure 6). In phase 1, acute in-
flammation, which may be subclinical in nature, results in
the sequential influx of lymphocytes, macrophages, and neu-
trophils into the pulmonary parenchyma. This injury is

Figure 6. Pulmonary dysfunction and the triphasic model of chronic GVHD. Conceptually, the triphasic model of chronic GVHD can be applied to the devel-
opment of lung dysfunction after allogeneic HCT. (A) In phase one, acute lung injury occurs as a consequence of an allogeneic immune response and results
in the influx of donor immune cells into an inflamed pulmonary parenchyma. (B and D) Persistence of an inflammatory signal in the setting of dysregulated
immunity promotes the transition from acute to chronic injury in phase two. If the inciting injurious event involves predominantly bronchiolar epithelial
cells, then phase II is associated with the development of chronic bronchiolitis (B). If, in contrast, the principal target of chronic inflammation is the alveolar
epithelium, then leukocyte recruitment and matrix deposition during phase two contribute to interstitial pneumonitis (D). (C) In the context of aberrant repair,
chronic inflammation proceeds to phase three. Lung fibroblasts increase dramatically in number and contribute to the enhanced deposition of collagen and
granulation tissue in and around bronchial structures, ultimately resulting in complete obliteration of small airways and fixed OLD characteristic of bronchi-
olitis obliterans (BrOb). (E) Fibroblast proliferation and intraseptal collagen deposition during phase three ultimately results in interstitial thickening, septal
fibrosis, significant volume reduction, and the development of severe restrictive lung disease (RLD) and interstitial fibrosis.
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initiated early after allogeneic HCT by a systemic
proinflammatory environment that leads to chemokine up-
regulation, leukocyte recruitment, and secretion of
inflammatory cytokines in the lung [104]. In phase 2, per-
sistence of an inflammatory signal in the setting of
dysregulated immunemechanisms results in epithelial apop-
tosis and the transition from acute to chronic injury, either
involving the peribronchiolar areas, resulting in the devel-
opment of chronic bronchiolitis, or confined primarily to the
interstitial space. As chronic inflammation proceeds to phase
3, lung fibroblasts contribute to the enhanced deposition of
collagen and granulation tissue. When this occurs in and
around bronchial structures, complete obliteration of small
airways, and significant, “fixed” OLD ensues. In contrast, fi-
broblast proliferation and intraseptal collagen depositionmay
ultimately result in interstitial thickening, septal fibrosis, sig-
nificant volume loss, and impaired gas exchange, which are
characteristic of severe RLD.

TGFβ is a central mediator that may be necessary to ini-
tiate fibrosis but insufficient to sustain fibrosis. More recently,
murine systems have shown that dysregulation of other
factors, including TNFα and IL-1β [268,284,292], aberrant B
cell immunity, and autoantibody/alloantibody production
[144], along with disruption of the balance of M1/M2 mac-
rophage function [132,268], may be operative as well.

MURINE CHRONIC GVHD MODELS: LABORATORY
INSIGHTS AS A BRIDGE TO CLINICAL TRANSLATION

It is generally accepted that animal models incompletely
replicate the complex phenotypes and clinical manifesta-
tions of chronic GVHD in humans. Moreover, current
preclinical models do not encompass the full spectrum of
pathological features of the clinical disease state. In keeping
with observations in humans, data generated in murine
models suggest that the immunologic underpinnings of
chronic and acute GVHD are distinct at both cellular and mo-
lecular levels. Two publications have provided comprehensive
overviews of currently available chronic GVHD systems and
have described the diverse efforts to study chronic GVHD using
murine models [293,294]. Model variables have been com-
pared and contrasted in terms of methodology (strain
combination, conditioning regimen, cell dose), disease pre-
sentation (target organs, pathological basis), and proposed
or elucidated pathogenic mechanisms.

In this section, we focus on more recent models that have
contributed to advances in our understanding of the patho-
physiology of chronic GVHD, particularly related to the phases
of chronic GVHD (Table 4). We discuss several new chronic
GVHDmodels that have been instrumental in facilitating the
testing of targeted strategies to prevent or treat chronic GVHD.

INFLAMMATORY MODELS AND THE TRANSITION FROM
ACUTE TO CHRONIC GVHD

It is accepted that proinflammatory acute GVHD re-
sponses likely play a role in the subsequent development of
chronic GVHD. This is particularly relevant to the study of
“overlap syndrome” with clinical acute GVHD characteris-
tics and progressive chronic GVHD. Chronic GVHD that is
preceded by acute GVHDmay differ biologically from de novo
chronic GVHD. One such model using the fully allogeneic,
MHC- and miHA-mismatched strain combination (C57BL/
6→Balb/c) is an established system for acute GVHD (Table 4).
Activated host APCs induce CD4+ and CD8+ donor-derived T
cells and cause mTEC damage, resulting in the production of
autoreactive CD4+ T cells. Donor graft–derived CD8+ T cells

are more potent than CD4+ T cells in inducing chronic GVHD,
but recipient thymus and de novo donor-derived CD4+ T cells
are required for disease penetration. Autoreactive T cells then
interact with donor DCs and B cells, resulting in their ex-
pansion and consequent perpetuation of chronic GVHD and
autoantibody production [70,159,295].

Similarly, a clinically relevant, G-CSF–treated, parent→F1
(C57BL/6→B6D2F1) irradiation model (Table 4), as well as the
aforementionedmultiorgan system chronic GVHDmodels (re-
viewed in [10,104]), implicate roles for IL-17 and tissue
infiltration of F4/80+macrophages as central mediators of skin
scleroderma [296]. Targeting macrophage colony-stimulating
factor (CSF) signalingmay represent a novel therapeutic strat-
egy for prevention and treatment of chronic GVHD [132].
Findings in this parent→F1 model also have been instrumen-
tal in the study of chronic fibrotic pulmonary dysfunction after
allogeneic HCT, including the demonstration that TNFα plays
a critical role during the transition from acute to chronic in-
flammation in the lungs [284,297,298]. Experimental data led
to the development and completion of a clinical study using
etanercept for HCT recipients with restrictive or obstructive
noninfectious chronic lung disease [299].

Preclinical Models of Immune Dysregulatory Chronic
GVHD
Lupus-like models

Historically, the most frequently used chronic GVHD strain
combination is a semi-allogeneic, non-irradiated, parent into
F1 model that result in lupus-like manifestations [300]
(Table 4). Following the infusion of unfractionated parental
splenocytes, GVHD is initiated by donor CD4+ T cell activa-
tion in response to host allogeneic MHC class II antigens,
resulting in cognate donor CD4+ T cell help to host B cells.
Acknowledged weaknesses of this model include the lack of
clinical correlates of human chronic GVHD, incomplete donor
engraftment, and the absence of radiation or conditioning
regimen–associated tissue injury. Nonetheless, novel poten-
tial targets for chronic GVHD intervention have been illustrated
through thismodel, including CD137 agonist therapy and anti-
TNF p55 subunit blockade [300,301].

Thymic damage and treg deficiency
As noted above, murine chronic GVHD models centered

on thymic damage and Treg deficiency have provided im-
portant information on the breakdown of thymic function and
central tolerance, uncovering an etiologic link between acute
and chronic GVHD [129,302]. In thesemodels (Table 4), GVHD-
induced alloimmunity is antigen-driven, resulting in repertoire
skewing and dominant, high-frequency clonotypes that
emerge owing to inadequate T cell immune regulation [69],
andmanifests predominantly as inflammatory (colitis) rather
than fibrotic disease [69].

B cells, immune dysregulation, and multiorgan GVHD
The importance of B cells in development of chronic GVHD

was first described in a sclerotic chronic GVHD miHA-
disparate, MHC-identical mouse model (C57BL6→LP/J) using
an anti-μ antibody [229] and subsequently in a full MHC-
disparatemodel (C57BL/6→B10.BR) inwhich the development
of multiorgan, chronic GVHD (including lung, liver, and colon
fibrosis) is associated with CD4+ T cell and B cell infiltration
[252,273]. In addition, donor-derived alloantibody (IgG) and
an increased frequency of Tfh cells that support GC formation
are required for BOS development. Interruption of GC for-
mation by various approaches can effectively reverse
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Table 4
Summary of Chronic GVHD Mouse Models

Model Type Model Characteristics Model Clinical Phenotype Findings Therapies Generated References

Lupus-like Parental haploidentical, DBA2 (H-2d

haplotype) splenocytes into unconditioned
(B6 × DBA2) F1 hosts (H-2bd haplotype)

• DNA and chromatin-directed
autoantibody; immune complex–
mediated glomerulonephritis; lack
of clinical correlation to human
chronic GVHD

• Partial donor chimerism
• Relies on activated host B cells

• CD137 agonist therapy
• Anti-TNF p55 subunit blockade

[300,301]

Thymic damage • Acute GVHD in lethally irradiated,
MHC-mismatched, recipient

• Post-BM transplantation, splenic T
cells transferred into unconditioned
donor strain immunodeficient (Rag−/−)
recipients

• Inflammatory disease (colitis)
• Not a fibrotic process

• GVHD is antigen-driven
• Repertoire skewing seen
• Dominant high-frequency clonotypes

[69,129,302]

Multiorgan
involvement

MHC disparate model; B10.BR mice are
conditioned with cyclophosphamide and TBI,
followed by the infusion of BM and purified
splenic T cells from B6 donors

Multiorgan involvement:
• Lung
• Liver
• Colon
• Tongue
• Spleen
• Thymus

• CD4+ T cell and B cell infiltration in
target organs

• Increased frequency of T follicular
helper cells by supporting GC formation
and maintenance, leading to IgG
deposition in target tissues, is essential
for disease pathogenesis

• Deficiency of T follicular regulatory cells
that suppress GC formation

• Macrophage-dependent disease
• Multiorgan system fibrosis (lung, liver,
colon) is a prominent feature

Abrogation of chronic GVHD by targeting:
• Lymphotoxin-β receptor Ig targeting GC
formation

• B cell signaling through Bruton’s tyrosine
kinase and IL-2–inducible T cell kinase via
ibrutinib; spleen tyrosine kinase targeting
with fostatinib

• Targeting Tfh cells by blocking ICOS,
CD40L, IL-21, and IL-2Rgc

• Phosphorylation of STAT3, Rho-associated
kinase 2, RORC, Jak1/2 (ruxolitinib)

• Macrophage depletion by targeting CSF-1
signaling

• T follicular regulatory infusion

[98,132,144,217,
240,241,252,273,
310]

Sclerodermatous/
lupus-like

• DBA/2 (H-2d) and BALB/c (H-2d) miHA-
only mismatched

• Sublethal irradiation and DBA/2
splenocytes

Donor B and CD4+ T cells required for
pathogenesis

• B cells drive clonal donor autoreactive
CD4+ T cells

• CD11b+/Gr-1+ PMNs and macrophages

• Anti-CD20 antibody prevents chronic
GVHD

[295,336].

Profibrotic • Classical model B10.D2→BALB/c
• Donor T cells B10.D2 and BALB/c mice
are MHC-matched (H-2d haplotype)
mismatched at MiHA

• 700 cGy of TBI to recipients and
infusion of BM and whole spleen cells

• Fibrotic changes in skin,
gastrointestinal tract, liver
• Bronchiolitis obliterans syndrome
model

• Donor B and CD4+ T cells required
for pathogenesis

• Mononuclear cell infiltration, increased
collagen deposition

• Expansion of Th1 and Th17 cells,
dermafibrosis with donor CD11b+

monocytes and activated macrophages
• Effector T cell and pSTAT3 dependent
• IL-10–producing B cells prevent disease

• Prevention and/or attenuation of
established chronic GVHD

• Am80, a potent synthetic retinoid
• Sphingosine-1-phosphate receptor
antagonist FTY720 modulates
inflammatory immune cells

• Bortezomib modulates pathogenic B cells

[62, 136-138, 144,
304-307, 336]

Sclerodermatous • LP/J→C57BL/6 model of
sclerodermatous chronic GVHD

• HLA-matched strains
• Myeloablative

Manifestations of both acute and chronic
GVHD:
• Skin
• Lungs
• Kidneys

Removal of B cells prevents T cell priming to
MiHA and development of chronic GVHD

Prevention of chronic GVHD:
• Treatment with anti-μ polysera
• Chloroquine
• Ibrutinib

[241,308]

Inflammatory with
progression of acute
GVHD to chronic
GVHD

• MHC mismatched, strain combination
(B6→Balb/c)

• Established model of acute GVHD
• Reduction in donor T cells develop
pathognomonic findings of chronic
GVHD (>60 d after HCT)

Chronic GVHD manifestations
• Cutaneous fibrosis
• Salivary glands
• Fibrosis of the thymus
• Serum autoantibodies

• Donor CD4+ and CD8+ alloreactive T cells
damage mTECs

• Donor CD8+ T cells induce chronic GVHD
• Recipient thymus and de novo donor
CD4 T cells required

• IL-17 mediates scleroderma
• Macrophages critical

Targeting CSF-1 signaling [70,159,295].

Progressive acute
GVHD to chronic
GVHD

• C57Bl/6 parent→irradiated B6D2F1
model with BM plus G-CSF–mobilized
splenocytes or unmobilized T cells

Sclerodermatous manifestation of chronic
GVHD:
• Skin
• Lung

• TNFα important for progression of acute
GVHD to chronic GVHD of the lung

• Anti–CSF-1
• Anti-TNFα (etanercept)

[132,292,296]

GVHD indicates graft-versus-host disease; HCT, hematopoietic cell transplantation; GC, germinal center; BM, bone marrow; PMN, polymorphonuclear lymphocyte; TBI, total body irradiation; MHC, major histocompatibility
vomplex; MiHA; minor histocompatibility antigen; G-CSF, granulocyte colony-stimulating factor; mTEC, medullary thymic epithelial cell.
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established, antibody-dependent chronic GVHD early in the
course of disease [240,241,252]. Recent work with same
model has shown that targeting Tfh cells hinders GC forma-
tion and prevents chronic GVHD, or reverses its early
manifestations [144].

Several important insights were also gained using an
MHC-matched DBA2→BALB/c model, in which disease is
manifested as lupus-like and sclerodermatous phenotypes
(Table 4). Donor B cells have a marked effect on the progres-
sion of chronic GVHD by sustaining the clonal expansion of
donor alloreactive CD4+ T cells [295]. Pathogenic alloreactive
T cells responsible for target tissue injury and consequent
recruitment of CD11b+/Gr-1+ macrophages and neutrophils
appear to originate from mature (post-thymic) T cells ad-
ministered with the donor graft, emerging without obvious
thymus damage [70]. Anti-CD20monoclonal antibodies (mAb)
given early post-HCT prevent chronic GVHD induction and
preserve GVL effects [303]. In contrast to human chronic
GVHD, administration of anti-CD20 mAb after GVHD onset
is not effective in depleting donor B cells or ameliorating
murine chronic GVHD in an miHA-disparate model
(B10.D2→Balb/c) and in 2 distinct MHC-disparate models
(C57BL/6→B10.BR and C57BL/6→Balb/c) [144]. This is pos-
sibly the result of failure to deplete CD20neg plasmablasts
and plasma cells.

Profibrotic Chronic GVHD Models
Important advances have occurred in various models in

which tissue fibrosis is the primary histological finding. In
the classical miHA-disparate, MHC-identical B10.D2→BALB/c
sclerodermatousmodel of chronic GVHD, the phenotypic hall-
marks are fibrotic changes in the skin, lung, gastrointestinal
tract, and liver (Table 4) [144,304]. Donor B cells and CD4+ T
cells are again important to disease development. Multiorgan
injury is caused by expansion of both Th1 and Th17 CD4+ T
cells, and dermal fibrosis is preceded by infiltration of donor-
derived CD11b+ cells consisting of monocytes and activated
macrophages [304]. When B10.D2 animals deficient in STAT3
are used as donors, Th17 cells do not develop in the recipi-
ent’s spleen and liver, the overall expansion of donor CD4+

T cells is reduced [136], and FoxP3+ Treg frequency steadily
increases. Selective neutralization of Th1 (IL-12)- or Th17-
promoting cytokines (IL-23) subverted chronic GVHD gen-
eration [137]. This initial Th1/Th17-driven step toward the
development of tissue fibrosis is amenable to down-regulation
by either modulation of PDL-1 expression on tissues and/or
stimulation of the PD-1 on donor T cells [138]. Several phar-
macologic interventions, such as Am80, a potent synthetic
retinoid [305], the proteosomal inhibitor bortezomib [306],
and the sphingosine-1-phosphate receptor antagonist FTY720
[307], play significant roles in the prevention and/or atten-
uation of established chronic GVHD in this model. IL-10–
producing Bregs also play a role in the prevention of
sclerodermatous GVHD in this system [249].

The LP/J→C57BL/6 model of sclerodermatous chronic
GVHD [308] is another solely miHA-disparate donor–recipient
strain combination. This system is characterized by mani-
festations of both acute and chronic forms of skin and lung
GVHD and was one of the first models to reveal a possible
role for B cells in antigen presentation during chronic GVHD
pathogenesis [229]. In addition to skin disease, alloimmune-
mediated injury can be detected in lung and kidney as
well. Ibrutinib, a Bruton’s tyrosine kinase and IL-2–inducible
T cell kinase, improves sclerodermatous chronic GVHD

progression-free survival and diminishes clinical and histo-
pathological chronic GVHD in this model as well as in the
C57BL/6→B10.BR multiorgan system model [241].

There are multiple roads to the development of tissue fi-
brosis, all converging on the production of profibrogenic
molecules and fibroblast proliferation. Genetic factors that
define the presentation and recognition of miHA antigens,
along with the utilization of G-CSF donor cell mobilization
[296], may be critical determinants of chronic GVHD sus-
ceptibility [309]. Both Th17 and Th2 cells appear to collaborate
with B cells that produce autoreactive or alloreactive anti-
bodies via IL-21 or IL-4, respectively. Indeed, donor splenocytes
deficient in the retinoid-related orphan receptor γ RORC (re-
quired for lineage commitment to IL-17–producing cells) fail
to cause chronic GVHD in a multiorgan system model [132],
indicating that BOS develops in an IL-17–dependent fashion,
similar to cutaneous chronic GVHD [296]. Antibody deposi-
tion can cross-link Fc receptors expressed on monocytes and
macrophages culminating in TGF-β release and activate B cells,
further fueling the antibody response. Th1 cells also may con-
tribute to chronic GVHD generation by causing tissue injury
to the thymus and mucosa of epithelial-rich organs, such as
small and large intestines and liver, and through the release
of inflammatory cytokines like TNFα. From a broader per-
spective, skin fibrosis appears to be an IL-17–dependent
process, whereas aberrant B cell function and alloantibody
deposition along with inflammatory cytokine release are im-
portant to lung and liver injury.

For the foreseeable future, there remains an unmet need
for relevant chronic GVHD murine models, especially those
that simulate the multiorgan manifestations and complex
immune pathology of chronic GVHD observed in humans. Es-
tablishing a model of chronic GVHD developing in an adult
or aged immune systemmay have significant merit, given the
increasing frequency of chronic GVHD with age. Improve-
ments in current chronic GVHD models that are limited by
the general absence of immunosuppressive drugs for acute
or chronic GVHD prophylaxis and treatment are also needed;
such systems may increase the likelihood of identifying the
most clinically relevant pathways of chronic GVHD genera-
tion and maintenance.

Finally, developing preclinical models to optimally address
how interventions to abrogate chronic GVHD may influence
GVL effects requires future investigation. This is a highly rel-
evant topic, given that some clinical studies have suggested
that effective GVL activity is derived primarily from chronic
GVHD rather than from acute GVHD, particularly when low-
intensity conditioning regimens are used. Numerous rodent
experiments have demonstrated preservation of GVL effects
when interventions are introduced in mice to attenuate acute
GVHD, but the same question has only recently been ex-
plored in the context of chronic GVHD [303,306,310]. In this
context, optimal chronic GVHDmodels should include several
factors: the biology of tumor proliferation and kinetics of
tumor elimination, whether interventions used to abrogate
chronic GVHD also target the tumor used, whether mecha-
nisms exploited by the experimental system to induce chronic
GVHD (targeting of tissue-specific antigens or end-organ–
specific immune cell homing, contribution of B cell responses)
lend themselves to antileukemia/antitumor effects, and the
magnitude of the immune response required to best study
graft-versus-host and graft-verus-tumor activity. The latter
will be influenced both by the number and composition (pu-
rified T cells versus whole splenocytes) of immune cells
infused along with the extent of lymphocyte (T cell and B cell)
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amplification associated with the development of chronic
GVHD.

BIOMARKERS AND HUMAN CHRONIC GVHD BIOLOGY
Although the primary purpose of biomarkers is not to

study the biology of disease, biomarker discovery and vali-
dation can still guide the understanding of disease
pathogenesis. Biomarker studies have identifiedmultiplemol-
ecules that have brought to light patterns in cellular subsets,
cytokines, autoantibodies, and other factors associated with
the diagnosis of chronic GVHD (reviewed in [311]. As such,

biomarker candidates can be important in guiding the design
of animal models focused on understanding the pathogen-
esis of human disease (reviewed in [311]). Inflammatory
markers, including IL-2Rα, aminopeptidase N (CD13), IL-4,
IL-6, and TNFα, have consistently been identified in pa-
tients with chronic GVHD [92,100,139,234,312,313]. Some of
themost promising diagnosticmarkers include the chemokine
ligands CXCL9, CXCL10, and CXCL11, which have been re-
ported to correlate with chronic GVHD [73,77,85,92-94].

Whether Tregs are reliable biomarkers for chronic GVHD
remains to be determined. Treg numbers are low in some

Table 5
Gaps in Knowledge and Proposed Priority Research Studies for Chronic GVHD Biology

GVHD indicates graft-versus-host disease; HCT, hematopoietic cell transplantation; miHA, minor histocompatibility antigen.
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studies but increased in others [187]. Recently, decreased
Treg:T cell effector ratios have been correlated with chronic
GVHD development in large series [192,221], thus this pa-
rameter has emerged as a promising biomarker for disease.
As noted earlier, the consequences of thymic damage on ap-
propriate negative selection following HCT is an area of
significant interest [160,164,169]. Although some studies have
not found an association between chronic GVHD and
thymopoiesis [314,315], others have noted a strong correla-
tion [168,316].

Despite efforts at categorical grouping, validation of even
the most promising biomarker candidates among large, in-
dependent cohorts has yet to be consistently achieved.
Association analyses may be optimized/enhanced by phe-
notypic classification. A possible approach would be to cluster
organ manifestations by their anatomic patterns (mucocu-
taneous, myofascial, pulmonary, and other organ). However,
although various organs involved in chronic GVHD can be af-
fected simultaneously, disease manifestations often
demonstrate a spreading behavior that progressively affects
a broader array of organs and sites over a period of weeks
to months. Another major challenge is that a number of clin-
ical factors appear to influence the predictive and prognostic
value of biomarkers. These include total body irradiation in
the conditioning regimen, peripheral or cord blood as the stem
cell source, and reduced-intensity preparative regimens [93],
strongly suggesting that the biology of chronic GVHD may
vary depending on the clinical scenario. Thus, given the clin-
ical and temporal variations in the organs affected, and the
protean manifestations within a given organ system, it is un-
likely that a unifying biomarker will be associated with all
chronic GVHD manifestations.

Establishing a clinical-biological classification system
(Table 2) may promote more effective correlations among
soluble or cellular biomarkers and established phenotypes.
Thus, it would be feasible to study these various biological pro-
cesses (inflammatory, immune dysregulatory, fibrotic/sclerotic)
stratified by organ involvement, in an effort to understand the
pathogenic mechanisms that explain the clinical heterogene-
ity of the disease. For example, a recent study separates oral
chronic GVHD into oral lesions, salivary dysfunction, and im-
paired mouth opening, and demonstrates associations with
cutaneous erythema, lacrimal dysfunction, and cutaneous scle-
rosis, respectively [317,318]. Along similar lines, recent work
has described the incidence and features of cutaneous, soft
tissue (fasciitis), or joint (contracture) sclerosis in a large cohort
of patients with chronic GVHD [319]. A follow-up study by the
same group revealed that 3 candidate single-nucleotide poly-
morphisms (SNPs) (in BANK1, CD247, and HLA-DPA), all of
which have well-documented links to systemic sclerosis, are
also associated with sclerotic GVHD. These findings support
the concept that sclerotic GVHD is a distinct biological phe-
notype of chronic GVHD and can be distinguished from
“conventional” chronic GVHD by genetic differences [320].

CONCLUDING REMARKS
Chronic GVHD remains the scourge of allogeneic HCT, neg-

atively influencing recipients’ quality of life, limiting successful
outcomes, and correlating with a number of late effects. It
has been more than 60 years since the seminal demonstra-
tion of acquired transplantation tolerance by Billingham, Brent,
andMedawar [321,322], yetmost current therapies for chronic
GVHD control are empirical, globally immunosuppressive, do
not specifically promote tolerance induction, and continue
to be associated with significant morbidity andmortality. Cel-

lular, medicinal, and protein/antibody-based strategies aimed
at restoring immune regulation, modulating T cell signaling
responsible for proinflammatory and profibrotic cytokine pro-
duction, blocking of T:B cell cooperativity, depleting antibody-
secreting cells or monocytes/macrophages that bind
pathogenic antibody, and targeting the profibrogenic process
offer the greatest opportunity for preventing and reversing
established chronic GVHD. Based on preclinical modeling,
some of these approaches have already been or are sched-
uled to be clinically tested. The heterogeneity of organ
involvement and clinical phenotypes, the paucity of human
tissue available for analysis, inconsistent signals from
biomarker studies, and profound knowledge gaps in biolog-
ical mechanisms of disease have hindered the discovery and
implementation of effective therapeutic strategies. In-
creased understanding of the initiating events, regulation of
inflammation and repair, and propagation of tissue injury and
fibrosis is required to achieve the long-term goal of chronic
GVHD immune modulation. A multidisciplinary approach,
alongwith prospective, longitudinal data collection and testing
of relevant preclinical animal models, are needed to define
the immunologic basis of disease and predict disease devel-
opment and progression (Table 5). This approach will allow
investigators to better define and exploit a window of op-
portunity that may exist for patients at high risk for chronic
GVHD or in the early stages of disease development.
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