19 research outputs found

    The Role of Egg Production in the Etiology of Keel Bone Damage in Laying Hens

    Get PDF
    Keel bone fractures and deviations belong to the most severe animal welfare problems in laying hens and are influenced by several factors such as husbandry system and genetic background. It is likely that egg production also influences keel bone health due to the high demand of calcium for the eggshell, which is, in part, taken from the skeleton. The high estrogen plasma concentration, which is linked to the high laying performance, may also affect the keel bone as sexual steroids have been shown to influence bone health. The aim of this study was to investigate the relationship between egg production, genetically determined high laying performance, estradiol-17ß concentration, and keel bone characteristics. Two hundred hens of two layer lines differing in laying performance (WLA: high performing; G11: low performing) were divided into four treatment groups: Group S received an implant containing a GnRH agonist that suppressed egg production, group E received an implant containing the sexual steroid estradiol-17ß, group SE received both implants, and group C were kept as control hens. Between the 12th and the 62nd weeks of age, the keel bone of all hens was radiographed and estradiol-17ß plasma concentration was assessed at regular intervals. Non-egg laying hens showed a lower risk of keel bone fracture and a higher radiographic density compared to egg laying hens. Exogenous estradiol-17ß was associated with a moderately higher risk of fracture within egg laying but with a lower risk of fracture and a higher radiographic density within non-egg laying hens. The high performing layer line WLA showed a significantly higher fracture risk but also a higher radiographic density compared to the low performing layer line G11. In contrast, neither the risk nor the severity of deviations were unambiguously influenced by egg production or layer line. We assume that within a layer line, there is a strong association between egg production and keel bone fractures, and, possibly, bone mineral density, but not between egg production and deviations. Moreover, our results confirm that genetic background influences fracture prevalence and indicate that the selection for high laying performance may negatively influence keel bone health

    Estradiol-17ß Is Influenced by Age, Housing System, and Laying Performance in Genetically Divergent Laying Hens (Gallus gallus f.d.)

    Get PDF
    The estrogen estradiol-17ß is known as one of the major gonadal steroid hormones with different functions in reproduction. In this study we analyzed estradiol-17ß concentration in laying hens of four pure bred chicken laying lines at four different time intervals of the laying period (17th–19th week of age, 33rd–35th week of age, 49th–51st week of age, and 72nd week of age). The high performing white egg (WLA) and brown egg (BLA) layer lines as well as the low performing white (R11) and brown (L68) layer lines were kept in both single cages and a floor housing system. We investigated whether there were differences in estradiol -17ß concentrations between lines at different ages that could be related to selection for high egg production or phylogenetic origin of the animals, and whether there was an influence of housing conditions on estradiol-17ß. Estradiol-17ß concentrations differed between high and low performing layer lines at all time intervals studied. High performing hens showed higher estradiol-17ß concentrations compared to low performing hens. In all lines, highest estradiol-17ß concentration was measured at their 49th to their 51st week of age, whereas the peak of laying intensity was observed at their 33rd to their 35th week of age. Additionally, hens with fewer opportunities for activity housed in cages showed higher estradiol-17ß concentrations than hens kept in a floor housing system with more movement possibilities. We could show that laying performance is strongly linked with estradiol -17ß concentration. This concentration changes during laying period and is also influenced by the housing system

    Effects of intra-hippocampal D-AP5 injections on one trial passive avoidance learning in adult laying hens (Gallus gallus domesticus)

    No full text
    Domestic chickens are an established model organism for studies on learning and memory. Commonly, the chicks are used as subjects in several different learning tests, including one trial learning tests. However, for adult laying hens no such one trial learning tests have been established. In particular, there is no test established which focuses on the role of the hippocampus, a brain region, which is often critically involved in learning and memory consolidation. In this study we investigated the inhibitory effects of intra-hippocampal D-AP5 injections on a specific one trial passive avoidance learning test in adult laying hens (Gallus gallus domesticus). We used a step down avoidance learning paradigm (SDA) which is frequently used in rodents. Intra-hippocampal injections of D-AP5 impaired the learning abilities of adult laying hens compared to sham-injected control subjects. Thus, the experiments revealed that the hippocampus is critically involved in learning the inhibitory SDA task. Our results further indicate that the step down avoidance paradigm is suitable to examine learning and memory processes in adult laying hens

    Bemerkungen zu den Konsequenzen von kannibalistischem Zehenpicken auf die Physiologie und das Verhalten von Legehennen ( Gallus gallus domesticus)

    No full text
    Krause ET, Petow S, Kjaer JB. A note on the physiological and behavioural consequences of cannibalistic toe pecking in laying hens (Gallus gallus domesticus). Archiv fĂŒr GeflĂŒgelkunde. 2011;75(2):140-143.Feather pecking and cloacal cannibalism are damaging allopecking behaviours well known and studied in the domestic chicken. They often lead to serious injuries or even death of the victims. Toe pecking is a less common phenomenon and much less is known about the potential effects on physiology and behaviour in victims of this type of allopecking. In the present study we found that exposure to toe pecking led to significantly enlarged adrenal glands which indicate increased physiological stress. The behaviour of toe pecked hens was also affected in that these hens stepped off a raised platform more quickly than Control hens, possibly indicating increased fearfulness of raised areas. Our results indicate that when toe pecking occurs in groups of hens, it represents an important welfare issue and more emphasis should be put on finding ways to reduce its occurrence

    Investigation of the Morphology of Adrenal Glands in Hens Kept in Two Different Housing Systems—A Pilot Study

    No full text
    It is difficult to objectively assess the chronic effects of housing systems on livestock and particularly on laying hens. However, this seems to be important in the context of animal welfare. Therefore, we conducted the present study in order to compare the effect of two different housing conditions, single cage (SC) and floor pen (FP), on the morphology of the adrenal gland. A higher amount of interrenal cells, which secrete stress hormones, can lead to a difference in the relation of adrenal and interrenal cells, which could be interpreted as an indication of chronic stress. For this purpose, adrenal glands were extracted, prepared, stained and examined by microscopy, and total area of the cut, total area of interrenal cells and total area of adrenal cells were measured. As a result, all laying hens had a higher percentage of interrenal cells than adrenal cells (FP: interrenal cells/adrenal cells = 78.37%/21.63%; SC: 80.00%/20.00%). The median of adrenal–interrenal ratio did not differ significantly (FP = 0.2503, SC = 0.2499), while the variation of the ratio between laying hens in FP and SC showed a slight tendency of a higher ratio in adrenal glands of FP (p < 0.0870). Body weight and adrenal–interrenal ratio were significantly negatively correlated in laying hens in FP (rS = −0.943, p < 0.0048) but not in SC (rS = −0.162, p = 0.7283). There was no significant correlation between body weight and total cell area for interrenal cells or adrenal cells. Body weight was significantly lower for laying hens kept in SC than for laying hens kept in FP (p < 0.0001). Due to the present results, it can be concluded that keeping laying hens in single cages can have a negative effect on body weight

    Table2_Japanese quails (Cortunix Japonica) show keel bone damage during the laying period—a radiography study.XLSX

    No full text
    Keel bone damage is an important welfare issue in laying hens and can occur with a high prevalence of up to 100% of hens within one flock. Affected hens suffer from pain. Although multiple factors contribute to the prevalence and severity of keel bone damage, selection for high laying performance appears to play a key role. With up to 300 eggs/year, Japanese quails show a high laying performance, too, and, thus, may also show keel bone damage. However, to our knowledge, there are no scientific results on keel bone damage in Japanese quails to date. Therefore, the aim of this study was to assess whether keel bone fractures and deviations occur in Japanese quails and to obtain more detailed information about the development of their keel bone during the production cycle. A group of 51 female quails were radiographed at 8, 10, 15, 19, and 23 weeks of age. The X-rays were used to detect fractures and deviations and to measure the lateral surface area, length, and radiographic density of the keel bone. In addition, the length of the caudal cartilaginous part of the keel bone was measured to learn more about the progress of ossification. At 23 weeks of age, quails were euthanized and their macerated keel bones assessed for fractures and deviations. Both keel bone deviations and keel bone fractures were detected in the Japanese quails. In the 23rd week of age, 82% of the quails had a deviated keel bone as assessed after maceration. Furthermore, there was a decrease in radiographic density, lateral surface area, and length of the keel bone between weeks of age 8 and 19. This could indicate a general loss of bone substance and/or demineralization of the keel bone. Our study shows that keel bone damage is not only a problem in laying hens but also affects female Japanese quails.</p

    Table3_Japanese quails (Cortunix Japonica) show keel bone damage during the laying period—a radiography study.XLSX

    No full text
    Keel bone damage is an important welfare issue in laying hens and can occur with a high prevalence of up to 100% of hens within one flock. Affected hens suffer from pain. Although multiple factors contribute to the prevalence and severity of keel bone damage, selection for high laying performance appears to play a key role. With up to 300 eggs/year, Japanese quails show a high laying performance, too, and, thus, may also show keel bone damage. However, to our knowledge, there are no scientific results on keel bone damage in Japanese quails to date. Therefore, the aim of this study was to assess whether keel bone fractures and deviations occur in Japanese quails and to obtain more detailed information about the development of their keel bone during the production cycle. A group of 51 female quails were radiographed at 8, 10, 15, 19, and 23 weeks of age. The X-rays were used to detect fractures and deviations and to measure the lateral surface area, length, and radiographic density of the keel bone. In addition, the length of the caudal cartilaginous part of the keel bone was measured to learn more about the progress of ossification. At 23 weeks of age, quails were euthanized and their macerated keel bones assessed for fractures and deviations. Both keel bone deviations and keel bone fractures were detected in the Japanese quails. In the 23rd week of age, 82% of the quails had a deviated keel bone as assessed after maceration. Furthermore, there was a decrease in radiographic density, lateral surface area, and length of the keel bone between weeks of age 8 and 19. This could indicate a general loss of bone substance and/or demineralization of the keel bone. Our study shows that keel bone damage is not only a problem in laying hens but also affects female Japanese quails.</p

    Table1_Japanese quails (Cortunix Japonica) show keel bone damage during the laying period—a radiography study.XLSX

    No full text
    Keel bone damage is an important welfare issue in laying hens and can occur with a high prevalence of up to 100% of hens within one flock. Affected hens suffer from pain. Although multiple factors contribute to the prevalence and severity of keel bone damage, selection for high laying performance appears to play a key role. With up to 300 eggs/year, Japanese quails show a high laying performance, too, and, thus, may also show keel bone damage. However, to our knowledge, there are no scientific results on keel bone damage in Japanese quails to date. Therefore, the aim of this study was to assess whether keel bone fractures and deviations occur in Japanese quails and to obtain more detailed information about the development of their keel bone during the production cycle. A group of 51 female quails were radiographed at 8, 10, 15, 19, and 23 weeks of age. The X-rays were used to detect fractures and deviations and to measure the lateral surface area, length, and radiographic density of the keel bone. In addition, the length of the caudal cartilaginous part of the keel bone was measured to learn more about the progress of ossification. At 23 weeks of age, quails were euthanized and their macerated keel bones assessed for fractures and deviations. Both keel bone deviations and keel bone fractures were detected in the Japanese quails. In the 23rd week of age, 82% of the quails had a deviated keel bone as assessed after maceration. Furthermore, there was a decrease in radiographic density, lateral surface area, and length of the keel bone between weeks of age 8 and 19. This could indicate a general loss of bone substance and/or demineralization of the keel bone. Our study shows that keel bone damage is not only a problem in laying hens but also affects female Japanese quails.</p
    corecore