255 research outputs found

    Implanting germanium into graphene

    Full text link
    Incorporating heteroatoms into the graphene lattice may be used to tailor its electronic, mechanical and chemical properties. Direct substitutions have thus far been limited to incidental Si impurities and P, N and B dopants introduced using low-energy ion implantation. We present here the heaviest impurity to date, namely 74^{74}Ge+^+ ions implanted into monolayer graphene. Although sample contamination remains an issue, atomic resolution scanning transmission electron microscopy imaging and quantitative image simulations show that Ge can either directly substitute single atoms, bonding to three carbon neighbors in a buckled out-of-plane configuration, or occupy an in-plane position in a divacancy. First principles molecular dynamics provides further atomistic insight into the implantation process, revealing a strong chemical effect that enables implantation below the graphene displacement threshold energy. Our results show that heavy atoms can be implanted into the graphene lattice, pointing a way towards advanced applications such as single-atom catalysis with graphene as the template.Comment: 20 pages, 5 figure

    Real scalar dark matter : relativistic treatment

    Get PDF
    A stable real scalar provides one of the simplest possibilities to account for dark matter. We consider the regime where its coupling to the Standard Model fields is negligibly small. Due to self-coupling, the scalar field can reach thermal or at least kinetic equilibrium, in which case the system is characterized by its temperature and effective chemical potential. We perform a fully relativistic analysis of dark matter evolution, thermalization conditions and different freeze-out regimes, including the chemical potential effects. To this end, we derive a relativistic Bose-Einstein analog of the Gelmini-Gondolo formula for a thermal averaged cross section. Finally, we perform a comprehensive parameter space analysis to determine regions consistent with observational constraints. Dark matter can be both warm and cold in this model.Peer reviewe

    Evading direct dark matter detection in Higgs portal models

    Get PDF
    Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight direct detection constraints. In the framework of gauge field DM, we study how such bounds can be relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic abundance and the direct detection limits are controlled by different parameters, and the two can easily be reconciled. This simple setup realizes the idea of "secluded" dark matter naturally. (C) 2017 The Author(s). Published by Elsevier B.V.Peer reviewe

    Impact of public subsidies on farms’ technical efficiency in New Member States before and after EU accession

    Get PDF
    This paper presents some results of a two-year (2006-2007) research project supported by the French Ministry of Research’s funding program ECONET. One of the project’s objectives was to investigate the determinants of farm technical efficiency in New Member States before and after accession to the European Union, and in particular the role of public subsidies on this performance variable. Four countries were considered: Hungary, the Czech Republic and Slovenia, who acceded to the EU in 2004, and Romania, whose accession was in 2007. The study found that subsidies had a negative impact on farm technical efficiency in Hungary over the period 2001-2005, in the Czech dairy corporate sector over the period 2000-2004, in Slovenia over the period 1994-2003, and in the Romanian crop sector in 2005.technical efficiency, farms, subsidies, Hungary, Czech Republic, Slovenia, Romania, Farm Management,

    Is the Post-Radical Prostatectomy Gleason Score a Valid Predictor of Mortality after Neoadjuvant Hormonal Treatment?

    Get PDF
    Purpose: To evaluate the validity of the Gleason score after neoadjuvant hormonal treatment as predictor of diseasespecific mortality after radical prostatectomy. Patients and Methods: A total of 2,880 patients with a complete data set and a mean follow-up of 10.3 years were studied; 425 of them (15%) had a history of hormonal treatment prior to surgery. The cumulative incidence of deaths from prostate cancer was determined by univariate and multivariate competing risk analysis. Cox proportional hazard models for competing risks were used to study combined effects of the variables on prostate cancer-specific mortality. Results: A higher portion of specimens with a history of neoadjuvant hormonal treatment were assigned Gleason scores of 8–10 (28 vs. 17%, p < 0.0001). The mortality curves in the Gleason score strata <8 vs. 8–10 were at large congruent in patients with and without neoadjuvant hormonal treatment. In patients with neoadjuvant hormonal treatment, a Gleason score of 8–10 was an independent predictor of prostate cancer-specific mortality; the hazard ratio was, however, somewhat lower than in patients without neoadjuvant hormonal treatment. Conclusion: This study suggests that the prognostic value of the post-radical prostatectomy Gleason score is not meaningfully jeopardized by heterogeneous neoadjuvant hormonal treatment in a routine clinical setting

    Dynamics of Transient Plasmas Generated by ns Laser Ablation of Memory Shape Alloys

    Get PDF
    Understanding the underline fundamental mechanism behind experimental and industrial technologies embodies one of the foundations of the advances and tailoring new materials. With the pulsed laser deposition being one of the key techniques for obtaining complex biocompatible materials with controllable stoichiometry, there is need for experimental and theoretical advancements towards understanding the dynamics of multi component plasmas. Here we investigate the laser ablation process on Cu-Mn-Al and Fe-Mn-Si by means of space-and time-resolved optical emission spectroscopy and fast camera imaging. In a fractal paradigm the space–time homographic transformations were correlated with the global dynamics of the ablation plasmas

    Facile synthesis and characterization of hydroxyapatite particles for high value nanocomposites and biomaterials

    Get PDF
    Lately Hydroxyapatite has gained a lot of research interest and intense focus due to its structural as well as compositional similarity to the components of human bone mineral. The conversion of calcium-rich precursors to hydroxyapatite could lead to the development of a new sustainable alternative with a valuable environmental and socio-economically impact. Still, current approaches faces lots of challenges in terms of synthesis parameters compatible to a reproducible route for calcium phosphates (hydroxyapatite included) synthesis. The optimization of Rathje synthesis route and characterization of biogenic derived calcium phosphates from dolomitic marble and Mytilus galloprovincialis seashells, constitutes the main goals of this study. The synthesized materials were characterized using FTIR, SEM coupled with EDS, and X-ray diffraction at all synthesis stages. Precursors were also subjected to thermal analysis and differential scanning calorimetry for thermal transformations investigations and dissociation temperature setting. This study suggests that acid quantity and magnetic stirring are the key-factors for Ca/P molar ratio adjustment, hence for the amount of naturally-derived hydroxyapatite. This research also contributes to the development of new strategies for further optimization of the conversion procedure and removal of residual components
    • …
    corecore