
J
H
E
P
0
8
(
2
0
1
9
)
0
5
0

Published for SISSA by Springer

Received: June 27, 2019

Accepted: July 23, 2019

Published: August 8, 2019

Real scalar dark matter: relativistic treatment

Giorgio Arcadi,a,b,c Oleg Lebedev,d Stefan Pokorskie and Takashi Tomaf

aMax-Planck-Institut fur Kernphysik,

Saupfercheckweg 1, 69117 Heidelberg, Germany
bDipartimento di Matematica e Fisica, Università di Roma 3,
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1 Introduction

The nature of dark matter (DM) remains one of the outstanding questions of modern

physics. The popular WIMP (weakly interacting massive particle) paradigm currently

finds itself under pressure due to ever improving bounds on dark matter interaction with

nucleons [1]. This motivates one to explore alternative scenarios in which the dark matter

relic density is not related to the annihilation into Standard Model (SM) particles. In this

work, we consider in detail one such example. In this case, the DM relic density is set by

either the dark sector thermodynamics or postinflationary initial conditions.

We study the simplest dark sector consisting of a single real scalar field S with the

potential [2]

V =
m2

2
S2 +

λ

4!
S4 , (1.1)
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where the self-coupling λ is large enough for the S quanta to reach kinetic equilibrium

at least. We assume that the dark matter coupling to the Standard Model, λHSH
†HS2,

is negligibly small, λHS < 10−13. In this case, the observable and dark sectors do not

equilibrate, DM freeze-in production [3] is suppressed and the DM evolution is determined

entirely by its self-coupling [4].

Although we focus on just one model of dark matter, the novelty of our approach is

that we account for all the stages in the (thermal) dynamics, which requires a relativistic

treatment with the Bose-Einstein distribution function. In particular, we derive relativistic

expressions for the number conserving and number changing reaction rates generalizing the

well known Gelmini-Gondolo result [5], and solve the corresponding Boltzmann equation

coupled with the entropy conservation condition. This allows us to study the different

freeze-out regimes, including the relativistic one, as well as trace the transition from the

pre-freeze-out epoch to post-freeze-out by deriving the chemical potential evolution. We

consider both fully thermalized dark matter and DM in kinetic equilibrium. Finally, we

delineate parameter space consistent with all the observational constraints, for which a

relativistic treatment is essential.

Regarding observational prospects, dark matter detection would be very challenging

due its negligible interaction with the visible sector. One may potentially observe effects

due to its self-interaction, but even that is not guaranteed because λ is allowed to be very

small and still consistent with the relic density constraints.

Previous analyses of this or closely related models include refs. [6]–[11] where S is

treated as a WIMP-like particle, and non-relativistic studies of feebly interacting S [12]–

[16]. We go beyond these results in that we offer a fully relativistic treatment and also

include the chemical potential. Relativistic effects in the Boltzmann equation within other

contexts have been considered, for example, in [17]–[19]. These analyses are not however

applicable to the model at hand.

The paper is organized as follows: after providing an inflationary motivation for our

study, we derive the expressions for the relativistic reactions rates. We then apply them to

derive the thermalization and freeze-out conditions, and delineate parameter space consis-

tent with the observed DM relic abundance.

2 Inflationary motivation

In this section, we motivate the setting for our study. Our main assumptions are that

the interaction between the SM fields and dark matter (DM) is negligible, and that DM

reaches some degree of thermal equilibrium, be it kinetic or chemical one. We argue that

the temperatures of the observable and dark sectors can differ dramatically, and that the

latter may also be characterized by effective chemical potential.

– 2 –
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2.1 Initial conditions for dark matter evolution

A bosonic system in thermal or kinetic equilibrium is described by its temperature T and

effective chemical potential µ via the momentum distribution

f(p) =
1

e
E−µ

T − 1
, (2.1)

where E =
√

m2 + ~p2. Here the chemical potential is not necessarily associated with

the conserved Noether current, instead it reflects approximate conservation of a particle

number in a given regime. The above distribution applies also to bosonic systems in an

expanding FRW Universe [20–22].

In general, the dark matter temperature T can be very different from that of the

observable sector TSM, as long as the interaction between the two is very weak [4]. Fur-

thermore, if the number changing processes in the dark sector are inefficient, dark matter

can be assigned effective chemical potential µ which determines its number density at a

given temperature,

n =
1

2π2

∫ ∞

m

(E2 −m2)1/2

e
E−µ

T ′ − 1
EdE , (2.2)

where µ < m. Even in the simplest case of real scalar dark matter, both T and µ are

in general necessary to describe its state. These determine the initial conditions for the

evolution of the system from the relativistic regime to freeze-out and its eventual state we

observe today.

2.2 Example

Dark matter and observable matter may be produced by very different mechanisms re-

sulting in different thermodynamic properties of the two sectors. In particular, their tem-

peratures may differ by orders of magnitude and the hidden sector can be endowed with

chemical potential if the number changing processes are inefficient.

Consider a simple possibility that the observed matter and dark matter are produced

after inflation via direct interaction with the inflaton φ. Suppose that the leading interac-

tion terms are

Vφh = σφh2 , (2.3)

VφS =
1

2
λφSφ

2S2 , (2.4)

where the unitary gauge for the Higgs field h has been assumed. For the purpose of

illustration, let us also choose the simplest inflaton potential,

Vinf =
1

2
m2

φφ
2 , (2.5)

with mφ ∼ 1013 GeV ≫ m. The matter production mechanisms depend on the balance

between σ and λφSφ. For relatively small σ, SM matter is produced at late times via

perturbative decay of the inflaton, while dark matter can be produced efficiently right

after inflation through parametric resonance.

– 3 –
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Let us consider these mechanisms in more detail. During the preheating stage, the

inflaton oscillates with a decreasing amplitude as φ(t) ≃ φ0/mφt sinmφt, where φ0 is close

to the Planck scale. This creates an oscillating mass term for S and leads to efficient dark

matter production as long as q = λφSφ
2/m2

φ ≫ 1. When q reaches 1, the resonance stops

and the subsequent DM evolution is determined primarily by its self-coupling λ. If λ is

small enough, the total number of the DM quanta remains approximately constant.

For small λφS . 10−8, the resonance is efficient for a short time of order 10m−1
φ

and produces relativistic DM quanta with typical momentum k ∼ mφ (see [23] for a

recent study). It converts only a small fraction of the inflaton energy into radiation. The

corresponding DM number density is conveniently parametrized by

n(a = 1) = c m3
φ , (2.6)

where c depends on the strength of the resonance q and a is the FRW scale factor which we

set to one at this stage. The energy of the DM quanta and their density evolve in time as

E(a) = E(1)/a , n(a) = n(1)/a3 . (2.7)

As long as the energy density of the Universe is dominated by the inflaton, a ∝ t2/3.

Radiation domination sets in when perturbative inflaton decay φ → hh rate becomes

comparable to the Hubble rate,

Γ =
σ2

8πmφ
∼ H ≃ mφφend√

6MPla3/2
, (2.8)

where φend is the inflaton amplitude at the end of the resonance. This equation can be

solved for a which plays the role of the time variable. The resulting reheating temperature

is found via the usual relation

TR ∼ 10−1
√

ΓMPl , (2.9)

which assumes that nearly all of the inflaton energy converts into Standard Model radia-

tion.1 At this point, the ratio between the average energy of the DM quanta E(a) ≃ mφ/a

and TR is given by

E(a)

TR
∼

(

mφσ
2MPl

φ4
end

)1/6

≪ 1 (2.10)

for σ ≪ MPl. This ratio stays constant in time since both quantities scale as radiation.

Thus, it determines the ratio between the hidden sector temperature T and that of the

observable sector TSM = TR, once dark matter reaches kinetic equilibrium through self-

interaction,
E(a)

TR
∼ T

TSM
≪ 1 . (2.11)

While the temperature is fixed by the average energy of the quanta, the number density

is an independent quantity determined by the production mechanism. It is instructive to

1Here we neglect the h production via tachyonic resonance. This is justified for σφ/m2

φ < 1.
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compare the DM number density n(a) to the equilibrium density at temperature T (a) with

zero chemical potential, n(T ) ≃ ζ(3)/π2 T 3,

n(a)

n(T (a))
∼ cπ2

ζ(3)
. (2.12)

This quantity also stays constant in time if the number changing interactions are sup-

pressed. Its magnitude depends strongly on the efficiency of parametric resonance. If the

resonance is weak, λφS < 10−8, one finds c ≪ 0.1 and n(a)/n(T (a)) ≪ 1.2 This implies

under-density of the DM quanta at a given temperature and thus the presence of negative

chemical potential.

The thermalization of dark matter is controlled by the self-coupling λ. For small λ ≪ 1,

e.g. 10−6 for typical cases, dark matter reaches kinetic equilibrium at some stage, however

the number changing processes are suppressed by a further factor of λ2 and chemical

equilibrium never sets in.

Note that integrating out the inflaton leads to a tiny Higgs-DM coupling of order

(λφS/8π
2)σ2/m2

φ. At sufficiently small σ, it is irrelevant to both thermalization and freeze-

in production of dark matter [3], making the effect emphasised in ref. [18] negligible.

This example illustrates that dark matter and observed matter can be produced by

very different mechanisms, in which case one expects different temperatures in the two

sectors. Furthermore, the dark sector can be endowed with effective chemical potential, as

long as the number changing interactions are inefficient.

3 Boltzmann equation and reaction rates

The particle density n(t) evolution is described by the Boltzmann equation. In addition

to the Universe expansion, n(t) is affected by the particle number changing processes such

as SS ↔ SSSS (figure 1) and those of higher order. Keeping the lowest order terms, the

Boltzmann equation in the FRW background reads (see e.g. [12, 22])

dn

dt
+ 3Hn = 2 (Γ2→4 − Γ4→2) , (3.1)

where H = ȧ/a, the factor of 2 comes from the particle number change in the scattering

process and the reaction rates per unit volume are

Γa→b =

∫

(

∏

i∈a

d3pi

(2π)32Ei
f(pi)

)





∏

j∈b

d3pj

(2π)32Ej
(1 + f(pj))



 |Ma→b|2 (2π)4δ4(pa − pb).

(3.2)

Here Ma→b is the QFT transition amplitude, in which we also absorb the initial and final

state symmetry factors; f(p) is the momentum distribution function. It can deviate from

the corresponding thermal distribution, yet as long as the system enjoys kinetic equilibrium

through efficient 2 → 2 scattering, f(p) takes the form [20, 22]

f(p) =
1

exp
E−µ

T −1
, (3.3)

2We thank Stanislav Rusak for verifying this point with lattice simulations.
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Figure 1. Lowest order number changing processes.

where µ is the effective chemical potential. This can be understood from the fact that

such a Bose-Einstein distribution maximizes the entropy with the approximately constant

particle number, while the number changing interactions are relatively slow.

In thermal (chemical) equilibrium, the number changing reaction rates are much

greater than the Hubble rate H and Γ2→4 equals exactly Γ4→2. This is because at µ = 0

f(k1) f(k2) f(k3) f(k4)
(

1 + f(p1)
) (

1 + f(p2)
)

= f(p1) f(p2)
(

1 + f(k1)
) (

1 + f(k2)
) (

1 + f(k3)
) (

1 + f(k4)
)

(3.4)

due to energy conservation in the reaction p1p2 ↔ k1k2k3k4, and |Ma→b| = |Mb→a|. As

a result, the right hand side of the Boltzmann equation vanishes and the total number of

particles is conserved,
d

dt
na3 = 0 . (3.5)

When the system departs from thermal equilibrium and a non-zero µ develops, the

cancellation is no longer exact. As a result, the total particle number changes. Eventually,

due to the Universe expansion, both Γ2→4 and Γ4→2 decrease to the extent that the right

hand side of the Boltzmann equation becomes negligible again and the total particle number

remains approximately constant. This happens roughly when

3Hn & 2 Γ2→4 , 2 Γ4→2 , (3.6)

which is called “freeze-out”. The freeze-out can take place in both relativistic and non-

relativistic regimes, which we will consider separately in what follows.

In order to understand both regimes, we need to derive compact expressions for the

rates which can be analyzed either analytically or numerically.

3.1 Relativistic reaction rates with the Bose-Einstein distribution function

Consider the reaction rate Γ2→4. Following Gelmini and Gondolo [5], we find it convenient

to express this rate in terms of the cross section σ(p1, p2),

σ(p1, p2) =
1

4F (p1, p2)

∫

|M2→4|2(2π)4δ4(p1+p2−
∑

i

ki)
∏

i

d3ki

(2π)32Eki

(1+f(ki)) , (3.7)

– 6 –
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where F (p1, p2) =
√

(p1 · p2)2 −m4 and 1 + f(ki) are the final state Bose-Einstein en-

hancement factors. In this expression, the momentum distribution function can be put in

a Lorentz-covariant form as (see e.g. [24])

f(p) =
1

e
u·p

T − 1
, (3.8)

where uµ is the 4-velocity of our reference frame relative to the gas rest frame in which

u = (1, 0, 0, 0)T . Apart from the Bose-Einstein factors, the above cross section is manifestly

Lorentz-invariant.

The reaction rate is then expressed as

Γ2→4 = (2π)−6

∫

d3p1d
3p2 f(p1)f(p2) σ(p1, p2)vMøl , (3.9)

where the Møller velocity is defined by

vMøl =
F (p1, p2)

E1E2
. (3.10)

It is clear that the rate is proportional to the thermal average 〈σvMøl〉.
The cross section is easiest calculated in the center-of-mass frame.3 Hence, for each pair

p1, p2 in the gas rest frame, we find the center-of-mass frame and compute the corresponding

cross section. The 4-velocity factor is thus a function of the momenta, uµ(p1, p2).

Introduce

p =
p1 + p2

2
, k =

p1 − p2
2

, (3.11)

such that
d3p1

2E1

d3p2

2E2
= 24d4p d4k δ

(

(p+ k)2 −m2
)

δ
(

(p− k)2 −m2
)

. (3.12)

The center-of-mass frame is defined by the requirement that p has zero spacial components.

Let us parametrize the timelike p as

p0 = E cosh η,

p1 = E sinh η sin θ sinφ,

p2 = E sinh η sin θ cosφ,

p3 = E sinh η cos θ,

where E is the particle energy in the center-of-mass frame, η is the rapidity and θ, φ are

the angular variables (see appendix A). Then

d4p = sinh2 ηE3dE dη dΩp , (3.13)

where Ωp is the solid angle in p-space. Due to the δ-functions, the k-integral reduces to

angular integration over the solid angle Ωk in k-space. We thus have, for any G(p1, p2),
∫

d3p1

2E1

d3p2

2E2
G(p1, p2) = 2

∫ ∞

m
dE

√

E2 −m2 E2

∫ ∞

0
dη sinh2 η

∫

dΩp dΩk G(p1, p2) ,

(3.14)

3The public code CalcHEP [25] computes the cross sections either in the center-of-mass or in the lab

frame. Thus, for numerical analysis, it is necessary to convert our expressions into one of these frames.

– 7 –
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where in the integrand one must set k0 = 0, |k| =
√
E2 −m2 in k-dependent quantities.

Note that E is half the center-of-mass energy.

The cross section is calculated in the center-of-mass frame. Thus, we need to transform

the final state momenta ki to that frame, ki → Λki, where Λ is the corresponding Lorentz

transformation given in appendix A. Due to Lorentz-covariance, σ(p1, p2) retains the same

form except for the Bose-Einstein enhancement factors which now become

1 + f(ki) = 1 +
1

e(k
0
i cosh η+k3i sinh η−µ)/T − 1

(3.15)

since (Λ−1u) · ki = k0i cosh η + k3i sinh η (see appendix A). As a result, the center-of-mass

cross section depends on η as well, σCM(E, η). The angular integrations can be performed

explicitly with the result

Γ2→4 = (2π)−6

∫

d3p1d
3p2 f(p1)f(p2) σ(p1,p2)vMøl (3.16)

=
4T

π4

∫ ∞

m
dE E3

√

E2−m2

∫ ∞

0
dη

sinhη

e2(E coshη−µ)/T −1
ln

sinh E coshη+
√
E2−m2 sinhη−µ
2T

sinh E coshη−
√
E2−m2 sinhη−µ
2T

×σCM(E,η) .

Here, σCM(E, η) includes the Bose-Einstein factors for the final state and is non-zero for

E ≥ 2m. The cross section can be computed numerically with CalcHEP by absorbing

1 + f(ki) into a momentum-dependent vertex. Note that in our convention, the symmetry

factors due to the identical particles in the initial and final states, namely, 1/(2!4!), have

been absorbed into σ. In the small T limit, the final state enhancement factors can be

neglected and one recovers the Gelmini-Gondolo result

Γ2→4 ≃
2T

π4

∫ ∞

m
dE σ(E) E2(E2 −m2) K1(2E/T ), (3.17)

where K1(x) is the modified Bessel function and µ is set to zero.

The rate Γ4→2 can be obtained from Γ2→4 by noting that

f(p) = (1 + f(p)) e−
u·p−µ

T , (3.18)

such that

f(k1) f(k2) f(k3) f(k4)
(

1 + f(p1)
) (

1 + f(p2)
)

= f(p1) f(p2)
(

1 + f(k1)
) (

1 + f(k2)
) (

1 + f(k3)
) (

1 + f(k4)
)

e2µ/T . (3.19)

Therefore

Γ4→2 = Γ2→4 e
2µ/T . (3.20)

While obtaining σCM(E, η) for the 2 → 4 and 4 → 2 reactions in a closed form does not

seem possible, the 2 → 2 reaction is simple enough such that σ2→2
CM (E, η) can be computed

explicitly. The corresponding reaction rate is needed to describe kinetic equilibrium. We

have

σ2→2
CM (E, η) =

1

4F (p1, p2)

∫

dΩ
|k1|

(2π)28E
|M|2

(

1 + f(k1)
) (

1 + f(k2)
)

, (3.21)

– 8 –
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where |M|2 = λ2/(2!2!). As explained above, we include the symmetry factors for the final

and initial states in the amplitude, so the large E limit of this cross section differs from the

standard result (see e.g. [26]) by 1/2!. This is admissible since we are only interested in

the thermal averages, which are convention-independent. The angular dependence comes

entirely from f(ki). Computing the integral, we obtain

σCM
2→2(E, η) =

1

2!2!
× λ2T

64πE2
√
E2 −m2 sinh η

1

1− e−
2E
T

cosh η
ln

sinh E cosh η+
√
E2−m2 sinh η
2T

sinh E cosh η−
√
E2−m2 sinh η
2T

,

(3.22)

where we have set µ = 0. A non-zero µ is trivially included via the replacement E cosh η →
E cosh η − µ. Plugging this result into an analog of (3.9), we obtain Γ2→2.

Finally, let us note that at high temperatures it is important to include the thermal

mass term, i.e.

m2 → m2 +
λ

24
T 2 . (3.23)

This regularizes the behaviour of the rates at T ≫ m and cures the infrared divergence as

m → 0.

3.2 Conditions for thermal and kinetic equilibria

Thermal or kinetic equilibrium is maintained if the relevant reaction rate is larger than the

Hubble rate. It is convenient to express this condition in terms of the quantities appearing

in the Boltzmann equation. For full thermal equilibrium, we require

3nH . 2Γ2→4 , (3.24)

which implies that the number changing interactions are efficient and the Bose-Einstein

distribution is realized. On the other hand, kinetic equilibrium is maintained as long as

3nH . Γ2→2 , (3.25)

such that the scattering rate is high enough to define a temperature. This is a weaker

condition since normally Γ2→2 ≫ Γ2→4. The system is still described by the Bose-Einstein

distribution which maximizes entropy, however a non-zero chemical potential is necessary

to account for approximate particle number conservation.

Throughout this paper we assume that before and around freeze-out, the energy density

of the Universe is dominated by the SM fields. This can be either due to higher temperature

TSM in the observed sector or due to a larger number of SM degrees of freedom g∗. In this

case,

a =
const

TSM
, H =

√

π2g∗
90

T 2
SM

MPl
. (3.26)

In the relativistic regime, T ≫ m, the temperature ratio

ξ ≡ TSM

T
(3.27)

– 9 –
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Figure 2. Parameter space consistent with thermal or kinetic equilibrium for different ξ = TSM/T .

Couplings above the green (purple) lines are necessary for thermal (kinetic) equilibrium neglecting

the chemical potential.

remains constant. We find that the ratio Γ2→4/(nH) is maximized around T ∼ 5m/
√
λ, i.e.

when the thermal mass becomes comparable to the bare mass (see section 4.3). Imposing

condition (3.24) at this temperature, we obtain a lower bound on λ at each m. The allowed

parameter space is shown in figure 2. The values of λ above the green lines are consistent

with thermal equilibrium for a given ξ.4 (Naively, since n ∝ T 3 and Γ2→4 ∝ T 4, one expects

the constraint (3.24) at high temperature to be of the type m ≪ T < const × λ4ξ−2MPl;

while this shows the right trend, i.e. the minimal λ increases with m, in reality the λ-

dependence is more complicated due to the thermal mass contribution.)

Regarding kinetic equilibrium, the ratio Γ2→2/(nH) is maximized at T ∼ O(m). Using

our result for Γ2→2, we find the allowed parameter space in figure 2.5 The couplings above

the purple lines are necessary for maintaining kinetic equilibrium in the relativistic regime.

Since the rate involves a lower power of λ, the m and ξ dependences are stronger than

those in the case of full thermal equilibrium.

Here we require thermalization in the relativistic regime. In the non-relativistic case,

the bound on the coupling is stronger (see appendix B), so figure 2 gives the necessary

condition.

We see that thermal equilibrium requires self-coupling of order 10−4–10−3 at m ∼
1GeV, while for kinetic equilibrium λ can be as small as 10−8–10−7. Thus, there is a large

4The constraint provides the necessary condition for thermal equilibrium, while the thermalization pro-

cess depends on further details such as the initial distribution function.
5The reaction rate is affected by the chemical potential. However, if |µ| is small compared to the

temperature, the effect is not very significant.
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window in which only kinetic equilibrium is maintained and the DM number is approxi-

mately conserved.

4 Freeze-out

In what follows, we consider separately the non-relativistic and relativistic freeze-out

regimes. Here we assume that the system enjoys full thermal equilibrium such that µ = 0

initially. In this case, the relic DM density is affected by the number changing interactions,

which we study in detail.

4.1 Non-relativistic freeze-out

In the non-relativistic regime, the expressions for the reaction rates simplify. The mo-

mentum distribution is given by the Maxwell-Boltzmann function f(p) = e−(E−µ)/T and

the final state enhancement factors can be neglected. In this case, the chemical potential

dependence factorizes out and according to (3.2) we have,

Γ2→4 = e−2µ/TΓ4→2 = e2µ/TΓ4→2(µ = 0) . (4.1)

It is conventional to define

σ4→2v
3 ≡ 1

2Ek12Ek22Ek32Ek4

∫

d3p1

(2π)32E1

d3p2

(2π)32E2
|M4→2|2 (2π)4δ4 (Σpi − Σkj) , (4.2)

which is momentum independent in the non-relativistic limit ki ≃ (m,~0)T . As usual, we

absorb the symmetry factor 1/(2!4!) into |M4→2|2. We thus have

Γ4→2(µ = 0) = (2π)−12

∫

∏

i

(

d3ki e
−Eki

/T
)

σ4→2v
3 = 〈σ4→2v

3〉n4
eq , (4.3)

where the equilibrium particle density is neq = (2π)−3
∫

d3pf(p)µ=0 and 〈. . .〉 denotes

a thermal average at µ = 0 over the momenta of the incoming particles. Expressing

the chemical potential in terms of the particle densities as eµ/T = n/neq, we obtain the

Boltzmann equation in the form

dn

dt
+ 3Hn = 2〈σ4→2v

3〉(n2n2
eq − n4) . (4.4)

An important feature of this equation is that 〈σ4→2v
3〉 is temperature independent.

It is convenient to replace the time variable with the SM sector temperature and the

number density with the total particle number, which stays approximately constant when

the number changing interactions become inefficient. Let us define

x =
m

TSM
, Y =

n

sSM
, (4.5)

where sSM is the entropy density dominated by the SM contribution,

sSM =
2π2

45

m3

x3
g∗s , (4.6)
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with g∗s being the number of degrees of freedom contributing to the entropy. This number

is a function of the temperature such that

dsSM
dx

= −3sSM
x

(

1− x

3g∗s

dg∗s
dx

)

. (4.7)

In terms of the new variables, the Boltzmann equation reads

dY

dx
= −2〈σ4→2v

3〉s3SM
xH̃

(

Y 4 − Y 2Y 2
eq

)

, (4.8)

where the modified Hubble rate is defined by

H̃ ≡ H

(

1− x

3g∗s

dg∗s
dx

)−1

, (4.9)

and H =
√

π2g∗/90 m2/(x2MPl). Observe that the x-dependent prefactor on the right

hand side of the Boltzmann equation falls off sharply with x, namely as x−8. This implies

particle number conservation at late times.

Our next task is to derive Yeq(x). Indeed, there are two unknowns in our system: T (t)

and µ(t) which should be determined by 2 equations. The second constraint comes from

entropy conservation in the dark sector, sa3 = const, or

s

sSM
≡ c , (4.10)

which is constant in time. The entropy density in the non-relativistic limit is given by

s =
m− µ+ T

T
n , n =

(

mT

2π

)3/2

e−
m−µ

T , (4.11)

where in s we also include the subleading term proportional to T . This allows us to express

T as

T =
2πT 2

SM

m

(

2π2

45
g∗sY

)2/3

exp

[

2

3

( c

Y
− 1

)

]

. (4.12)

Since Yeq = Y e−µ/T , we obtain

Yeq = Y exp

[

−x2

2π

(

2π2

45
g∗sY

)−2/3

exp

[

2

3

(

1− c

Y

)

]

+
c

Y
− 1

]

. (4.13)

This is to be inserted in the Boltzmann equation, while c is determined by the boundary

condition at µ = 0:

c =

(

m

T0
+ 1

)

Y0 , (4.14)

and Y0 is fixed by the initial dark and observed sector temperatures, T0 and TSM0.

Now the Boltzmann equation can be solved numerically. We assume that at the initial

point defined by T0 and TSM0, the system enjoys thermal equilibrium (µ = 0). Then,

– 12 –
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Figure 3. Thermodynamic quantities as a function of x for non-relativistic freeze-out.

Y (x) is found by solving the Boltzmann equation with this boundary condition. In the

non-relativistic limit, we find (see appendix C)

〈σ4→2v
3〉 =

√
3λ4

2!4! 256πm8
, (4.15)

where we have factored out the 1/(2!4!) symmetry coefficient associated with the initial and

final state phase space. The resulting solution for a representative set of input parameters

is shown in figure 3.

The upper left panel of figure 3 shows that Y (x) follows Yeq closely up until x ∼ 25,

at which point it freezes-out and the number density remains approximately constant. As

we see from the right upper panel, the freeze-out is well described by

3nH ≃ 2Γ2→4 ≃ 2Γ4→2 . (4.16)

After that, Γ4→2 becomes suppressed compared to 3nH, whereas Γ2→4 turns negligible

even faster.

The effective chemical potential becomes appreciable, of order T , around the freeze-

out point after which it can be approximated by a linear function of T asymptotically

approachingm, m−µ ∝ T . This follows from the entropy and particle number conservation

in the dark sector (see eq. (4.11)). In this regime, T ∝ T 2
SM as required by eq. (4.12). Before
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Figure 4. Reaction rates with Bose-Einstein statistics versus those with Maxwell-Boltzmann statis-

tics.

the freeze-out, the T dependence on TSM is only logarithmic. Non-relativistic behaviour

of DM leads to the heating of the dark sector [4], which can be viewed as a result of

appreciable Γ4→2 at that stage.

Note that Yeq(x) is not a solution to the Boltzmann equation since Y ′
eq(x) does not

vanish. The true solution Y (x) is close to the “equilibrium” value until freeze-out. This

implies that the right hand side of the Boltzmann equation is necessarily non-zero which

entails reduction of the total DM number na3 during this period. We find that the reaction

rate difference 2(Γ4→2−Γ2→4) is indeed not far from 3nH such that the number reduction

is tangible.

After the freeze-out, the particle number is approximately constant, typically within

10%. Hence one can approximate

Y (∞) ≃ Y (xf ) , (4.17)

where xf is the freeze-out point. This is a slightly different condition compared to what

is often used in the literature. Here, we do not neglect the Yeq(x) term which makes the

number reduction less efficient, especially in the vicinity of the freeze-out point.

4.2 Relativistic freeze-out

For m/T . 1, the relativistic effects are important and one should use the Bose-Einstein

distribution function. As figure 4 shows, the resulting reaction rates differ from their

Maxwell-Boltzmann analogs by 10% to 100% at m/T ∼ 1, while at m/T ∼ 0.1 this

difference can reach two orders of magnitude. The Bose-Einstein rates are greater due to

the enhancement factors for the low energy states. Therefore, the effect is sensitive to the

value of the thermal mass and decreases for larger couplings.

As in the non-relativistic case, the evolution of the system is determined by the chemical

potential and the temperature. The Boltzmann equation and entropy conservation fix µ

and T as functions of TSM. Defining

y ≡ m

T
(4.18)
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and x ≡ m/TSM, we rewrite the Boltzmann equation as an equation for µ(y) and x(y):6

1

m

dµ

d log y
=

I1
I2

+
1

yH̃I2

d log x

d log y
[2(Γ2→4 − Γ4→2)− 3Hn] , (4.19)

where

I1 =

∫

d3p

(2π)3
f(p)(1 + f(p))

[

E − µ

m
− λT 2

24mE

]

, (4.20)

I2 =

∫

d3p

(2π)3
f(p)(1 + f(p)) , (4.21)

with E(p) =
√

m2
eff + p2 ≡

√

m2 + λT 2/24 + p2, n =
∫

d3p/(2π)3f(p) and I1,2,Γ2→4,

Γ4→2, H̃, n are to be expressed in terms of µ, x and y. The modified Hubble rate H̃ is

defined by eq. (4.9). Note that we have included the thermal mass correction which leads

to an extra contribution in eq. (4.20).

The second equation for µ(y) and x(y) is provided by the entropy conservation condi-

tion
s

sSM
= const (4.22)

with

s =
ρ+ p− µn

T
(4.23)

and sSM from eq. (4.6). Here the energy density ρ and the pressure p are given by the

standard Bose-Einstein formulas, and are to be expressed in terms of µ and y.

The two coupled equations can be solved numerically.7 We present our results in

figure 5. The corresponding freeze-out temperature is Tf = 1.2GeV with m = 1GeV,

which makes the freeze-out regime relativistic.

Compared to the non-relativistic case, we observe a few differences. First, the evolution

of Y and µ is slower. Second, there is no “warming” period in which the dark temperature

decreases much slower than TSM. After freeze-out, T decreases faster than TSM does. This

is due to approximate conservation of the particle number n/T 3
SM: the increase in µ gets

compensated by a decrease in T . Eventually, T ∝ T 2
SM in the non-relativistic regime. For

comparison, we present the evolution of ξ for relativistic and non-relativistic freeze-out in

figure 6.

Again, we find that Y (∞) can be well approximated by Y at freeze-out.

4.3 Ultra-relativistic freeze-out

Freeze-out at T ≫ m,m/
√
λ is not possible in our model. In this regime, T/TSM stays

constant by virtue of entropy conservation and

nH ∝ T 5 , Γ2→4 ∝ T 4 . (4.24)

6This can be derived by expressing the left hand side of the Boltzmann equation in terms of dY/dx with

Y = n/sSM, and calculating this derivative explicitly in terms of f(p).
7We compute Γ2→4 by integrating numerically the CalcHEP output.
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Figure 5. Thermodynamic quantities as a function of x for relativistic freeze-out. Here Tf ≃
1.2GeV.

Figure 6. Evolution of ξ = TSM/T for relativistic and non-relativistic freeze-out. Dashed curve:

λ = 0.1 and m/Tf = 0.92; solid curve: λ = 10 and m/Tf = 7.4.
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Figure 7. Left: normalized 2 → 4 rate dependence on the coupling. The thermal mass effect is

clearly seen at m/T ≪ 1. Right: log-scale evolution of Γ2→4/n and H.

Thus, if the thermal equilibrium condition 3nH < 2Γ2→4 is satisfied at some point, it will

continue to hold as long as dark matter remains ultra-relativistic.8 As a result, no freeze

out is possible.

We note that the thermal mass effect is important in this regime. Due to the in-

frared singularity, the high temperature rates contain the T/meff factors. For instance,

Γ2→2 ∝ T 4 ln T
meff

, where meff includes the thermal correction (3.23). At T > 5m/
√
λ, the

effective mass is dominated by the thermal term and the expected behaviour Γ2→2 ∝ T 4

is reproduced. (Here we neglect the usual log-running of the coupling constant which is

insignificant for λ in the range of interest.) Similar considerations apply to Γ2→4. The

effect of the thermal mass is clearly seen in the left panel of figure 7: while in the non-

relativistic regime the rate scales as λ4, at higher temperatures this is no longer true. The

T 4-behaviour is recovered when the thermal mass dominates.

Figure 7 (right) collects the different regimes in the Γ2→4 behavior and presents an

overall picture. At high temperatures, Γ2→4/n ∝ T evolves slower than H ∝ T 2
SM does.

This changes when the thermal mass becomes subdominant, which is marked as “rel./semi-

rel.” in the plot. Finally, in the non-relativistic regime Γ2→4/n ∝ n3 is exponentially

suppressed. The magnitude of the rate relative toH is determined by the coupling constant.

The plot makes it clear that freeze-out in the ultra-relativistic regime is impossible. Also, if

the dashed line is above the solid line, thermalization is never achieved. This is determined

by Γ2→4 in the relativistic/semi-relativistic regime where T is not too far from m. The

resulting lower bounds on λ are presented in figure 2.

5 Parameter space analysis

In this section, we delineate our parameter space and determine regions consistent with

the dark matter relic abundance constraint as well as other relevant bounds. We consider

separately the full thermal and kinetic equilibrium cases.

8This is in contrast to the SM neutrino case, where the reaction rate involves a higher power of T .
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Figure 8. Parameter region (white) consistent with the correct DM relic density, Bullet Cluster,

thermalization, and perturbative unitarity constraints. Points lying on each curve reproduce the

correct DM relic abundance for a specified ξ(xf ) at freeze-out. In the red region, the relic density

and freeze-out equations have no simultaneous solution.

5.1 Thermalized dark matter

In this subsection, we assume that dark matter has been in thermal equilibrium and an-

alyze the (m,λ, ξ)-parameter space consistent with the observed DM relic density. This

constraint can be put in the form

Y (∞) = 4.4× 10−10

(

GeV

m

)

. (5.1)

Let us discuss the main qualitative features of the model. Consider first the non-

relativistic freeze-out regime. As discussed earlier, we define the freeze-out point by

3nH = 2〈σ4→2v
3〉n4 . (5.2)

Solving this equation for Tf and equating Y (xf ) = Y (∞), we find that the correct relic

density is reproduced along the curves with the approximate scaling

λ ∝ m ξ
−7/4
f , (5.3)

where ξf is TSM/T at the freeze-out point and we have neglected the logarithmic terms. For

a fixed ξf , the mass-coupling relation is approximately linear and the freeze out temperature

decreases with the coupling,

Tf ∝ m

const + lnλ
, (5.4)
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where the constant is positive. Thus, at sufficiently small λ, the non-relativistic approxi-

mation breaks down and a fully relativistic analysis is necessary.

Our numerical results with the relativistic reaction rates are presented in figure 8. We

observe that in most allowed parameter space the freeze-out is relativistic, i.e. m/Tf < 3

as marked by the green dotted line. In this region, the constant ξf curves tend to approach

a vertical at T & m since Y is determined mostly by ξ and rather insensitive to λ. These

curves exhibit characteristic kinks due to a change in the SM degrees of freedom at QCD

phase transition (TSM ∼ 10−1GeV) and electron decoupling. It is interesting that Tf does

not vary monotonically along the constant ξf curve: first, it decreases down to a minimum

value and increases from there on.

For a given ξf , the correct relic density curve cannot be continued indefinitely to

smaller λ: at some point, 3nH > 2Γ2→4 for any T (see section 4.3). Thus, the relic density

and freeze-out equations have no simultaneous solution. The excluded region is marked

“no thermalization” in figure 8. Although different points on the border of this region

correspond to different ξ, its shape is consistent with figure 2. We note that here the

thermal mass effect is significant which makes analytical calculations more challenging.

Another constraint is imposed by the bound on DM self-interaction from the Bullet

Cluster, σ/m < 1 cm2/g, with σ = λ2/(128πm2). It excludes light DM with significant

self-coupling. Finally, perturbative unitarity is violated in the process SS → SS if λ &

8π [27]. We note that the nucleosynthesis constraint on the effective number of neutrinos is

insignificant here since the dark matter contribution to the energy density in the relativistic

regime is suppressed by T 4/T 4
SM ≪ 1.

In the non-relativistic regime, we find qualitative agreement with the results of ref. [13]

although there are numerical differences.

Figure 8 shows that the correct relic density can be obtained for a wide range of DM

masses: from 10 keV to 100TeV, as long as the dark temperature is significantly below

TSM. Thus, both the “warm” and the “cold” options are open.

5.2 Dark matter in kinetic equilibrium and µ 6= 0

For small enough self-coupling (see figure 2), the system reaches only kinetic but not

thermal equilibrium. The notion of temperature is still well defined in this case, but the

Bose-Einstein distribution involves an effective chemical potential from the start. The

latter is determined by the initial number density. Assuming T ≫ m, we have

n =
T 3

π3
Li3(e

µ/T ) , (5.5)

where Li3(x) is the third degree polylogarithm, Li3(x) =
∑∞

n=1 x
n/n3. For a given initial

n, µ is read off from (5.5).

We are mostly interested in µ < 0 which suppresses the dark matter density. In theories

with antiparticles, the antiparticle distribution involves −µ which restricts |µ| < m [28, 29].

This does not apply to the model at hand and the S-gas can be arbitrarily dilute as long

as kinetic equilibrium is maintained. At large −µ, the density is exponentially suppressed,

n ∝ eµ/T .
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Figure 9. Left: parameter space consistent with the correct relic density for dark matter in kinetic

equilibrium. The curves are labeled by ξ = TSM/T . Both ξ and µ/T are fixed in the relativistic

regime (T = 10m). In the excluded area, the energy density of relativistic DM exceeds 5% of that

of the SM radiation. Right: minimal self-coupling required for kinetic equilibrium as a function of

µ/T for m = 1GeV.

It is straightforward to derive the temperature and chemical potential evolution. Since

both the total number and entropy are conserved, away from the thresholds where the

number of SM degrees of freedom changes, we have

n

T 3
SM

= const ,
s

T 3
SM

= const , (5.6)

such that at T ≫ m one finds

µ ∝ T ∝ TSM . (5.7)

Our numerical results are shown in figure 9. It displays the constant ξ curves producing

the correct DM relic density in the (m,−µ/T ) plane.9 Here the parameters ξ and µ/T are

defined in the relativistic regime (T = 10m). The fixed relic density lines correspond ap-

proximately to e−µ/T ∝ m/ξ3. For a fixed ξ and small m, the dilution factor e−µ/T becomes

insignificant and the relativistic dark sector starts making a substantial contribution to the

energy density of the Universe. Throughout this paper we assume that the SM thermal

bath dominates the energy density balance, hence we exclude the region ρDM/ρSM > 0.05,

which is also disfavored by cosmological bounds on the effective number of neutrinos [30].

The right panel of figure 9 shows that significantly larger couplings are required for

kinetic equilibrium as the gas becomes more dilute. The rate Γ2→4 is still smaller than

Γ2→2, so full thermal equilibrium is not reached for a significant range of the couplings. We

find that the Bullet Cluster bound on the self-coupling is insignificant here and superseded

by the constraint ρDM/ρSM < 0.05.

Note that the dark sector in kinetic equilibrium is allowed to be significantly hotter

than the observable one, T ≫ TSM. This is consistent with the constraints due to the

exponential suppression of ρDM for substantial −µ/T .

9We focus on µ < 0 since positive values of µ are bounded by m and omit the possibility of the Bose-

Einstein condensate formation.
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Overall, we find that there is a large range of DM masses consistent with observations.

For a givenm within this range, there exists an initial DM density which leads to the correct

relic abundance. Thermodynamical considerations apply to this system as long as the self-

coupling is large enough to bring it into kinetic equilibrium. For smaller couplings, the

correct relic abundance can still be obtained, however the dark temperature is ill-defined.

6 Conclusion

We have performed a comprehensive study of real scalar dark matter decoupled from the

Standard Model fields. We have considered two regimes where the dark sector can be

assigned a temperature:

• DM in thermal equilibrium (larger self-coupling)

• DM in kinetic equilibrium (smaller self-coupling)

In the latter case, the relic abundance is fixed by the initial number density which corre-

sponds to a non-zero effective chemical potential. In the former case, it is determined by

the freeze-out temperature below which the number changing interactions are suppressed.

We have developed a relativistic approach to the dark matter evolution. In particu-

lar, we use fully relativistic expressions for the number changing and number conserving

reaction rates. This allows us to explore the relativistic freeze-out regime, which occurs

commonly in the allowed parameter space. When the dark temperature is much smaller

than the observable one, the correct DM relic abundance can be obtained for a wide range

of DM masses, 10 keV to 100TeV. The required self-coupling is above 10−5.

If dark matter reaches only kinetic equilibrium, the correct relic density can be obtained

both for T < TSM and T > TSM as long as DM is sufficiently dilute, −µ & T . The allowed

DM mass is then above 100 eV. The presence of chemical potential also suppresses the

effect of relativistic DM on nucleosynthesis.

Altogether, there is vast parameter space consistent with the thermal history of the

Universe, while dark matter can be warm or cold.
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A Transformation to the center of mass frame

Here we provide some of the explicit expressions for the conversion from a general reference

frame to the center-of-mass frame. Given 2 momenta p1, p2, we define p = (p1 + p2)/2 and

k = (p1 − p2)/2. The center-of-mass frame is defined by the relation

p = Λ(p)











E

0

0

0











, (A.1)

where E is the particle energy in the center-of-mass frame. In the convention p =

(p0, p3, p2, p1)T , the explicit form of Λ and its inverse in terms of the rapidity η and angular

variables θ, φ is given by

Λ(p) =











1 0 0 0

0 1 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ





















1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1





















cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1











,

Λ(p)−1 =











cosh η − sinh η 0 0

− sinh η cosh η 0 0

0 0 1 0

0 0 0 1





















1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1





















1 0 0 0

0 1 0 0

0 0 cosφ sinφ

0 0 − sinφ cosφ











.

In this frame, the 6 degrees of freedom of p1, p2 become E, η and 4 angles θ, φ, θk, φk,

where θk and φk are the spherical coordinate angles parameterizing k. Note that k0 = 0

and |k| =
√
E2 −m2 due to the on-shell condition for the initial particles.

As a result, for the rest frame velocity u = (1, 0, 0, 0)T and final state momenta ki in

the center-of-mass frame, we have

(Λ−1u) · ki = k0i cosh η + k3i sinh η , (A.2)

which appears in the Bose-Einstein enhancement factors for the final state. In the initial

state thermal averaging, we encounter

u · p1 = (Λ−1u) · (p+ k) = E cosh η +
√

E2 −m2 sinh η cos θk ,

u · p2 = (Λ−1u) · (p− k) = E cosh η −
√

E2 −m2 sinh η cos θk , (A.3)

where we have used k3 = |k| cos θk.

B Non-relativistic thermalization

Here we present a non-relativistic analog of figure 2. The reaction rate at µ ∼ 0 is

Γ4→2 = 〈σ4→2v
3〉n4

eq , (B.1)
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Figure 10. Couplings consistent with thermalization in the non-relativistic regime. The tempera-

ture ratio is fixed at T0 = m/5 (left) and T0 = 5m (right).

with a non-relativistic number density neq and 〈σ4→2v
3〉 given by (4.15). We require

T < m/5 for DM to be sufficiently non-relativistic. The condition 3nH < 2Γ42 translates

into the lower bound on λ shown in figure 10. The result depends on how TSM/T is fixed:

the left panel shows the bounds for TSM/T = 1 . . . 100 at T = m/5, whereas the right panel

displays the bounds for TSM/T = 1 . . . 100 fixed in the relativistic regime, T = 5m, and

continued to lower T < m/5 using entropy conservation,

s/sSM = const . (B.2)

The reaction rates involve at least n2 and thus drop sharply with the temperature, as

illustrated in figure 3. Therefore, the equilibrium condition for a given (λ,m) should be

tested at the highest T consistent with the non-relativistic regime. If it is not satisfied at

this point, dark matter will not thermalize at lower T either. Similar considerations apply

to the kinetic equilibrium condition.

The resulting bounds on the coupling are stronger than those in the relativistic case.

In particular, comparison of the right panel of figure 10 with figure 2 shows that if DM

is relativistic initially and does not thermalize in the relativistic regime, it will not reach

thermal equilibrium later either.

C Non-relativistic 4 → 2 cross section

In this appendix, we provide details of the 4 → 2 cross section calculation in the non-

relativistic limit. We believe this is useful since there are significant discrepancies with the

results in the literature [13, 16].

There are two distinct contributions to the amplitude shown in figure 1. The ini-

tial state momenta are all (m,~0)T , while the final state momenta can be chosen as

(2m,
√
3m, 0, 0)T and (2m,−

√
3m, 0, 0)T . Consider the diagram on the right. The mo-

mentum flow through the propagator is p2 = −3m2, while the symmetry factor is

1/(2!)×122×2!4!, where 1/(2!) is due to the 2d order in the coupling and 2!4! is due to the

permutations among the initial and final state legs. For the left diagram, the momentum
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flow through the propagator is p2 = 9m2 and the symmetry factor is 1/(2!) × 96 × 2!4!

Thus, the QFT amplitude defined in the standard way is given by

|M̂4→2| =
1

2!

(

λ

4!

)2 ∣
∣

∣

∣

− 122

4m2
+

96

8m2

∣

∣

∣

∣

2!4! =
λ2

m2
. (C.1)

In our convention, we include the phase space symmetry factor for the initial and final

state, 1/(2!4!), directly in the cross section. Thus, according to (4.2) we have

〈σv3〉 = σv3 =
1

2!4!
×

√
3

256πm4
|M̂4→2|2 , (C.2)

which reproduces (4.15).

This result can be verified numerically. The 2 → 4 cross section is calculated with

CalcHEP, while in equilibrium the 2 → 4 and 4 → 2 rates are related through 〈σv3〉 =

〈σv〉/n2
eq, according to our cross section convention. We find excellent agreement with our

analytical formula.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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