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Many models of Higgs portal Dark Matter (DM) find themselves under pressure from increasingly tight 
direct detection constraints. In the framework of gauge field DM, we study how such bounds can be 
relaxed while retaining the thermal WIMP paradigm. When the hidden sector gauge symmetry is broken 
via the Higgs mechanism, the hidden sector generally contains unstable states which are lighter than 
dark matter. These states provide DM with an efficient annihilation channel. As a result, the DM relic 
abundance and the direct detection limits are controlled by different parameters, and the two can easily 
be reconciled. This simple setup realizes the idea of “secluded” dark matter naturally.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Higgs sector of the Standard Model (SM) enjoys a special 
feature that it can couple to the hidden sector at the renormaliz-
able level. In particular, a “Higgs portal” interaction term [1–3]

V portal = λhφ |H|2|φ|2 , (1)

where φ is a hidden sector scalar, is allowed by all symmetries 
and has dimension 4. Thus, interactions of this type are expected 
on general grounds.

An interesting application of this observation is that the Higgs 
field can couple to dark matter (DM), which is thought to reside 
in the hidden sector. If the hidden sector is endowed with gauge 
symmetry, a natural DM candidate would be the corresponding 
vector field [4–6]. Indeed, the U(1) and SU(N) spontaneous sym-
metry breaking with a minimal number of scalar fields implies 
stability of some of the massive gauge fields. This is due to a resid-
ual symmetry which acts on the hidden sector states only. In the 
most general case, multi-scalar systems break CP such that the sta-
bilizing symmetry is Z2 (or a generalization thereof),

Aa
μ → (−1)na Aa

μ , (2)

where a is a group index and na is an integer. In the non-Abelian 
case, this Z2 is part of a larger unbroken group, e.g. SO(3) or U(1) 
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[4,7]. It should be noted that for U(1) and SU(2) gauge groups, 
CP is unbroken since only a single field is required to break the 
symmetry and the above Z2 can be viewed as charge conjugation.

The hidden sector “Higgs” field(s) φ mixes with the SM Higgs 
due to the portal coupling Eq. (1). Therefore, the 125 GeV scalar 
couples to DM, although such a coupling is suppressed by the mix-
ing angle. As a result, the hidden sector DM can annihilate into the 
SM states and scatter off nuclei as a conventional WIMP would. 
The current direct DM detection constraints from LUX and PandaX 
experiments [8,9] are so tight that the WIMP paradigm within the 
Higgs portal framework finds itself under pressure. The core of the 
problem is that the couplings controlling DM annihilation and its 
scattering off nuclei are related, while the direct detection bound 
requires the latter to be small.

In this work, we emphasize that the Higgs portal models with 
gauged hidden sectors possess unstable states which can be lighter 
than dark matter. This provides DM with an efficient annihilation 
channel which breaks the correlation between the annihilation 
cross section and the direct detection rate.1 Thus, all of the con-
straints can easily be satisfied in this kinematic regime. This type 
of DM is known as a “secluded WIMP” [11,12], while in this work 
we show that it is realized quite naturally in the Higgs portal mod-
els with gauged hidden sectors. In the context of an SU(2) model, 
this phenomenon was noted in [4]. The same idea applies of course 

1 A different mechanism to reconcile relic density constraints with the thermal 
WIMP paradigm is discussed in Ref. [10] for the scalar Higgs Portal.
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to other set-ups as long as there are unstable fields lighter than 
DM (see e.g. [13,14]).

2. Hidden U(1) sector

The simplest example of a vector DM model with a natural Z2
symmetry [4,5] (see also [15–17]) is a hidden Abelian gauge sec-
tor. Within effective field theory, the model (with a heavy “hidden 
Higgs”) was analyzed in [18,19].

The Lagrangian is given by

Lhidden = −1

4
Fμν F μν + (Dμφ)† Dμφ − V (φ) , (3)

where φ is a charged scalar, Fμν is the U(1) field strength of the 
gauge field Aμ and V (φ) is the potential. We take the charge of 
φ to be +1/2 for easier comparison to the non-Abelian case. In 
unitary gauge φ can be written as φ = (ṽ + ρ)/

√
2 where ṽ is the 

VEV and ρ a real scalar field. The imaginary part of φ is eaten 
by Aμ which obtains the mass mA = g̃ ṽ/2, where g̃ is the gauge 
coupling. The gauge–scalar interactions are given by

�Ls−g = g̃2

4
ṽρ Aμ Aμ + g̃2

8
ρ2 Aμ Aμ . (4)

The Z2 symmetry

Aμ → −Aμ , (5)

which is the usual charge conjugation symmetry, makes the mas-
sive gauge field stable so that the latter is a viable dark matter 
candidate.

The visible and hidden sectors interact via the Higgs portal cou-
pling

Lportal = −λhφ |H|2|φ|2 . (6)

This coupling leads to the mixing of ρ with the Higgs, which in 
unitary gauge can be written as H T = (0, v + h)/

√
2. The fields ρ

and h can be written in terms of mass eigenstates h1,2 as

ρ = −h1 sin θ + h2 cos θ ,

h = h1 cos θ + h2 sin θ , (7)

where θ is the Higgs mixing angle and we identify h1 with the 
125 GeV Higgs.

Here we assume that the tree level kinetic mixing between the 
hypercharge gauge boson and Aμ is zero. This happens if the cor-
responding generators are orthogonal in the UV completion. For 
instance, the observable sector can originate from one E8 factor of 
the E8 × E8 string theory, while the hidden sector comes from the 
other [20]. The kinetic mixing is not generated radiatively as long 
as the interaction between the two sectors is due to the Higgs por-
tal term.

Let us now discuss the main phenomenological features of this 
scenario. All the relevant scattering processes, including DM anni-
hilation and DM scattering on nucleons, proceed through h1 and 
h2 exchange. The dark matter–nucleon interaction cross section is 
given by (see e.g. [6])

σ SI
A−N = g2 g̃2

16π

m2
Nμ2

AN f 2
N

m2
W

(m2
h2

− m2
h1

)2 sin2 θ cos2 θ

m4
h1

m4
h2

, (8)

where mN is the nucleon mass, μAN = mAmN/(mA + mN ) and 
f N � 0.3 parametrizes the Higgs–nucleon coupling. One should 
keep in mind that there is an uncertainty in f N and here we use 
the default micrOMEGAs [21] value.

With regard to dark matter annihilation, we focus on the kine-
matic regime mA > mh2 . For a small sin θ , the main annihilation 
channel in our study is A A → h2h2 since the relevant vertices 
are not θ -suppressed. The contributions to this process include 
the t-channel A-exchange, the s-channel h1,2 exchange as well as 
the contact A Ah2h2 term. The full cross section expression is quite 
bulky and not particularly illuminating, thus let us only quote the 
limit sin θ � 1 and mh1 � mA, mh2 ,

〈σ v〉 = g̃4

576πm2
A

√√√√1 − m2
h2

m2
A

× 11m8
h2

− 80m6
h2

m2
A + 240m4

h2
m4

A − 320m2
h2

m6
A + 176m8

A(
4m2

A − m2
h2

)2 (
2m2

A − m2
h2

)2
. (9)

In our numerical studies, however, we use the exact result.
In Fig. 1, we display the results of our numerical studies us-

ing the package Micromegas [21].2 Apart from the direct detection 
and relic density constraints, we show the perturbativity bounds 
for the gauge and scalar couplings. In the upper panels, the Higgs 
decay constraint is also displayed. It comes from the requirement 
that the LHC Higgs signal strength μ be close to the correspond-
ing SM prediction. When the Higgs production is approximately 
SM-like, as is the case for small sin θ , the experimental result 
μ = 1.09+0.11

−0.10 [22] translates into BR(h → invisible) ≤ 0.11 at 95% 
CL. This constrains the h1 coupling to DM and to h2 when the cor-
responding decay channels are open. For the parameter choices of 
the lower panels, this bound is not relevant. Instead, we display 
there an upper bound on sin θ from the Higgs coupling measure-
ments. The mixing between the SM Higgs and the hidden Higgs 
suppresses all the couplings of the 125 GeV scalar universally, and 
is thus subject to the strong LHC bounds.

The thermal WIMP paradigm is consistent with the LUX con-
straint for mA > mh2 (plus the resonance regions mA � mh1,2/2) 
and a sufficiently small θ . If h2 is relatively heavy, mh2 ∼
O(100) GeV, the required mixing angle is about 0.1 or less. For 
a light h2, the direct detection rate gets quite high and a smaller 
θ ∼ O(10−2) is necessary. Note also that in the region mh1 ∼ mh2 , 
there are substantial cancellations in σA−N .

The lower panels show that the annihilation cross section at 
mA > mh2 , mh1 is largely independent of sin θ . This is because, ne-
glecting the h1 − h2 mass difference, the gauge boson interactions 
with h1,2 are equivalent to those with ρ (Eq. (4)) which are inde-
pendent of θ . The s-channel diagrams with h1,2-exchange include 
θ -dependent Higgs vertices. These however are subleading such 
that the full cross section depends on θ very weakly. We see from 
Fig. 1 that the upper bound on sin θ from LUX is about 0.1 for the 
chosen mh2 . Our dark matter candidate evades XENON1T detection 
for somewhat smaller sin θ values, between 10−2 and 10−1.

These plots illustrate very well our main point: in the regime 
mA > mh2 , the direct detection rate is almost uncorrelated with 
the annihilation cross section.

The SU(2) hidden sector case [4,23,24] is very similar to the 
Abelian case considered here since both symmetries can be broken 
by a single field.3 For larger groups, the situation is more involved 
and in the following section we study an SU(3) example.

2 In order to be able to apply the standard thermal freeze-out computations, the 
dark and visible sectors have to be in kinetic equilibrium at least until DM freeze-
out at T � mA/20. This is the case if the interaction rate for elastic scattering of 
DM particles off SM particles is larger than the Hubble rate. We checked that this 
is indeed satisfied for the parameter ranges which we consider.

3 Note that no kinetic mixing terms are allowed in case of non-Abelian hidden 
gauge groups.
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Fig. 1. Dark matter constraints in the plane (mA , ̃g) (upper panels) and (sin θ, ̃g) (lower panels) for U(1) DM. The red band indicates the correct relic DM density. The other 
curves mark the following constraints: grey – perturbativity, purple – invisible Higgs decay, dark red – Higgs couplings, green – LUX 2016 direct DM detection, orange – 
XENON1T direct DM detection prospects for 2 t · y exposure. The blue line represents the direct detection event rate corresponding to the relic neutrino scattering off nuclei. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. Hidden SU(3) sector

For SU(3) and larger groups [6], the dark matter composition 
depends on whether CP is broken in the scalar sector. In general, 
the scalar potential with multiple fields allows for complex cou-
plings which violate CP. In what follows, we will adhere to this 
general situation, in which case DM is composed of gauge fields.4

The corresponding stabilizing symmetry is a global subgroup of the 
gauge group.

Let us now consider in detail a hidden sector endowed with 
SU(3) gauge symmetry following Ref. [6]. The symmetry is bro-
ken spontaneously (to nothing) by VEVs of two triplets φ1 and φ2. 
This is the minimal setup that allows one to make all the SU(3) 
gauge fields massive. A variation of this model has been consid-
ered in [25].

The Lagrangian of the model is

−Lportal

= λH11 |H|2|φ1|2 + λH22 |H|2|φ2|2 − (λH12 |H|2φ†
1φ2 + h.c.) ,

(10a)

Lhidden

= −1

2
tr{GμνGμν} + |Dμφ1|2 + |Dμφ2|2 − V hidden , (10b)

where Gμν = ∂μ Aν − ∂ν Aμ + i g̃[Aμ, Aν ] is the field strength of 
the SU(3) gauge fields Aa

μ , g̃ is the gauge coupling, Dμφi = ∂μφi +
i g̃ Aμφi is the covariant derivative of φi and H is the Higgs doublet, 

4 If CP is preserved, DM may have a pseudoscalar component [7].
which in the unitary gauge can be written as H T = (0, v + h)/
√

2. 
The most general renormalizable hidden sector potential can be 
written as

V hidden(φ1, φ2)

= m2
11|φ1|2 + m2

22|φ2|2 − (m2
12φ

†
1φ2 + h.c.)

+ λ1

2
|φ1|4 + λ2

2
|φ2|4 + λ3|φ1|2|φ2|2 + λ4|φ†

1φ2|2

+
[

λ5

2
(φ

†
1φ2)

2 + λ6|φ1|2(φ†
1φ2) + λ7|φ2|2(φ†

1φ2) + h.c.

]
. (11)

In the unitary gauge, the fields φ1 and φ2 which are responsible 
for spontaneous SU(3) breaking (to nothing), can be written as

φ1 = 1√
2

⎛
⎜⎝

0

0

v1 + ϕ1

⎞
⎟⎠ , φ2 = 1√

2

⎛
⎜⎝

0

v2 + ϕ2

v3 + ϕ3 + iv4 + iϕ4

⎞
⎟⎠ ,

(12)

where the vi are VEVs and ϕi are real scalar fields. In general, 
CP is broken in the scalar sector and all of the scalar fields mix. 
In what follows, we make a simplifying assumption that v3 and 
v4 are small and can be neglected. This makes the analysis more 
tractable without affecting the essence of the model. For definite-
ness, we also take v1 > v2.

Our setup enjoys a symmetry that makes the fields A1
μ and A2

μ
stable. To see this, it is sufficient to realize that the model is sym-
metric under A1,2

μ → −A1,2
μ . This reflection symmetry is part of an 
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unbroken global U(1) which corresponds to the SU(3) gauge trans-
formation U AμU † with

U = eiξ/3 diag(e−iξ ,1,1) . (13)

Under this symmetry, the gauge field components are rotated as 
A1(2) → A1(2) cos ξ ∓ A2(1) sin ξ and A4(5) → A4(5) cos ξ ∓ A5(4) sin ξ . 
Thus only A1,2,4,5 have non-trivial U(1) quantum numbers, while 
A3,6,7,8 are neutral and can decay into SM matter. The scalar sec-
tor has an independent global U(1)′ symmetry φ1,2 → eiβ φ1,2. 
Since U acts effectively as an overall phase transformation on the 
scalar fields Eq. (12), the vacuum preserves a combination of U(1)′
and U . This symmetry has, in particular, the consequence that 
mA1 = mA2 and mA4 = mA5 (see [6]). It is intact as long as SU(3) is 
broken in the minimal fashion, that is, via VEVs of only 2 triplets.

Details of the particle spectrum can be found in [6,7], while for 
our purposes it is sufficient to highlight the following features. In 
the limit v3, v4 � v1, v2 the vector sector is composed of 6 pure 
states which form 3 mass degenerate pairs with masses

m2
A1 = m2

A2 = g̃2

4
v2

2, m2
A4 = m2

A5 = g̃2

4
v2

1,

m2
A6 = m2

A7 = g̃2

4
(v2

1 + v2
2) , (14)

and two mixed eigenstates

A3 ′
μ = A3

μ cosα + A8
μ sinα ,

A8 ′
μ = A8

μ cosα − A3
μ sinα , (15)

where

α =

⎧⎪⎪⎨
⎪⎪⎩

1
2 arctan

( √
3v2

2
2v2

1−v2
2

)
for v2

2 ≤ 2v2
1

1
2 arctan

( √
3v2

2
2v2

1−v2
2

)
+ π

2 for v2
2 > 2v2

1

(16)

so that α ∈ (0◦, 60◦). Their masses are

m2
A3 ′ = g̃2 v2

2

4

(
1 − tanα√

3

)
, m2

A8 ′ = g̃2 v2
1

3

1

1 − tan α√
3

. (17)

Since tanα > 0, an important consequence of this formula is that

mA1,2 > mA3 ′ . (18)

The lightest fields with non-trivial U(1) quantum numbers are 
A1,2

μ . They are stable and thus can play the role of dark matter. 
From now on, we will denote them by A for brevity. Other fields 
decay into either these fields plus SM states or entirely into the 
SM final states.

Due to Eq. (18), the DM annihilation channel

A A → A3 ′ A3 ′ (19)

is always open and does not suffer the sin θ suppression.5 A3 ′ is 
invariant under the transformation of Eq. (13) and thus it decays 
into SM fields via off-shell scalars. Therefore the “secluded” DM 
scenario [11] is realized here naturally. The relevant interactions 
are

L = g̃2

4
v2 (−sθh1 + cθh2)

×
⎡
⎣ ∑

a=1,2

Aa
μ Aaμ +

(
cosα − sinα√

3

)2

A3′
μ A3′μ

⎤
⎦

5 In practice, A3 ′ is slighter lighter than A1,2 such that this channel incurs some 
phase space suppression, yet remains efficient.
+ g̃ cosα
∑

a,b,c=1,2,3′
εabc ∂μ Aa

ν Abμ Acν

− g̃2

2
cos2 α

∑
a=1,2

(
Aa

μ Aaμ
(

A3′
ν A3′ν)

−
(

Aa
μ A3′μ)2

)
, (20)

where the εabc tensor is antisymmetric in indices 1, 2, 3′ . In this 
expression, we have neglected contributions of heavier scalar and 
vector states (see the spectrum in [7]).

The analysis of the scalar sector is facilitated assuming small 
CP breaking. In that case, one can repeat the analysis of [7] while 
keeping in mind that all the scalars mix and therefore are un-
stable. Following [7], the lightest spin-0 state can be a “mostly 
pseudoscalar” χ closely related to ϕ4. Depending on the param-
eter region, efficient DM annihilation channels

A A → χχ , h2h2 (21)

can be available. These are unsuppressed by sin θ and provide a 
further mechanism to “seclude” [11] our dark matter. The corre-
sponding analytical expressions are bulky and we omit them in 
this work.

Our numerical results are shown in Fig. 2. At low mA , the dom-
inant annihilation channel is A A → A3 ′ A3 ′ since A3 ′ is always 
lighter than A, while for heavier DM, the h2h2 and χχ final states 
become important. It is noteworthy that mA can be as low as 
22 GeV at sin θ = 0.01 without violating any constraints. This is in 
contrast to the U(1) case where there is no analog of the process 
A A → A3 ′ A3 ′ , which excludes very light DM. For sin θ = 0.1, the 
effect of the channel A A → h2h2 or A A → χχ is crucial to evade 
the LUX constraint so that the lowest allowed mA is about 200 GeV 
(except for the resonance regions). The lower panels show that 
again the upper bound on sin θ is of order 10−1 for electroweak 
masses.

This analysis can be repeated for larger SU(N) groups (see [6]). 
In the minimal setting, the gauge symmetry is broken by VEVs of 
N − 1 scalar N-plets. The lightest stable fields correspond to an 
SU(2) subgroup which gets broken at the last stage. The analog 
of A3 ′ is lighter than the analogs of A1,2 since it mixes with the 
other Cartan generators. Thus many features of our analysis gener-
alize to SU(N).

4. Conclusion

In the framework of Higgs portal dark matter, we have stud-
ied the interplay between the direct DM detection rates and the 
DM annihilation cross section. Focusing on spin-1 dark matter, we 
point out that the framework generally contains unstable states 
lighter than DM, which have a significant coupling to the lat-
ter. This opens up an efficient DM annihilation channel into such 
states thereby effectively decoupling the annihilation cross section 
from the direct detection rate. The latter is suppressed as long 
as the mixing angle between the SM Higgs and the “hidden Hig-
gs” is small. This allows us to circumvent the strong LUX/PandaX 
constraints while retaining the WIMP nature of our dark matter 
candidate.

We have illustrated this mechanism with both Abelian and non-
Abelian vector DM examples. In the U(1) and SU(2) cases, the 
“hidden Higgs” must be lighter than DM to allow for efficient an-
nihilation. For SU(3) and larger groups, the spectrum automatically 
contains light unstable vectors which provide DM with an annihi-
lation channel. This argument assumes that CP symmetry is broken 
in the scalar sector, which in general is the case.

The required mixing angle θ is of order 10−1 for O(100) GeV
DM masses. A somewhat smaller θ (by a factor of a few) would 
suppress the direct detection rate beyond the reach of XENON1T. 
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Fig. 2. Dark matter constraints in the plane (mA, ̃g) (upper panels) and (sin θ, ̃g) (lower panels) for SU(3) DM. The red band indicates the correct relic DM density. The other 
curves mark the following constraints: grey – perturbativity, purple – invisible Higgs decay, dark red – Higgs couplings, green – LUX 2016 direct DM detection, orange – 
XENON1T direct DM detection prospects for 2 t · y exposure. The blue line represents the direct detection event rate corresponding to the relic neutrino scattering off nuclei. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Dark matter can also be quite light, below 100 GeV, in which case 
the mixing angle is constrained to be in the range 10−2 . . . 10−1, 
depending on mA .

We emphasize that the mechanism does not require any sig-
nificant fine-tuning. When one of the hidden states turns lighter 
than DM, the annihilation process becomes efficient immediately. 
The required hidden sector gauge coupling lies in the range 0.1–1 
which appears rather natural.
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