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Abstract: The composition of Dark Matter (DM) remains an important open question.

The current data do not distinguish between single- and multi-component DM, while in

theory constructions it is often assumed that DM is composed of a single field. In this

work, we study a hidden sector which naturally entails multicomponent DM consisting

of spin-1 and spin-0 states. This UV complete set-up is based on SU(3) hidden gauge

symmetry with the minimal scalar field content to break it spontaneously. The presence

of multiple DM components is a result of a residual Z2 × Z ′2 symmetry which is part of

an unbroken global U(1)×Z ′2 inherent in the Yang-Mills systems. We find that the model

exhibits various parametric regimes with drastically different DM detection prospects. In

particular, we find that the direct detection cross section is much suppressed in large regions

of parameter space as long as the Standard Model Higgs mixes predominantly with a single

scalar from the hidden sector. The resulting scattering rate is often beyond the level of

sensitivity of XENON1T, while still being consistent with the thermal WIMP paradigm.
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1 Introduction

The existence of a Dark Matter (DM) component of the Universe is confirmed by several

astrophysical and cosmological probes, e.g. the CMB [1] and structure formation. Particle

physics solutions to the DM problem mostly rely on the existence of a new particle that

is stable on cosmological scales thanks to a symmetry, and with weak enough interactions

with Standard Model (SM) states to evade constraints from direct and indirect searches.

From the model-building point of view, these requirements are naturally satisfied by a

“hidden” sector whose states are singlets with respect to the SM symmetry group. In this

kind of a setup, stable particles of the hidden sector are Dark Matter candidates.

Despite the different symmetry groups acting on the visible and hidden sectors, renor-

malizable interactions can arise among them. The dimension-4 operators relevant to our

study are obtained by combining the gauge invariant dimension two terms H†H and Bµν

with similar dimension-two operators formed by the states of the hidden sector. The

strength of such “portal” interactions can be sufficient to bring the visible and hidden

sectors in thermal equilibrium in the Early Universe and realize the WIMP paradigm. In

addition, the DM candidates retain interactions with the visible particles at present times,

which could be within the reach of the current and future searches for new particles.

In the simplest models of this type, the hidden sector is populated (effectively) by

a single field which constitutes DM. The lowest order Higgs portal operators mediating

interactions between the DM and the SM states then read H†H|χ|2 or H†HV µVµ, with

χ and V µ being a scalar and a vector DM candidate, respectively, see e.g. [2–9].1 These

1An analogous fermionic Higgs portal interaction [10, 11] is dimension-5. Note also that even though

naive dimension counting gives 4 for H†HV µVµ, it actually originates from a dim-6 operator [8]. See also

related analyses in [12–14].
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simple set-ups are currently under pressure from constantly improving experimental con-

straints. Indeed, by crossing symmetry arguments, there is a relation between the DM pair

annihilation cross-section at freeze-out, responsible for the relic density, and the processes

potentially responsible for detection signals, such as scattering on nuclei, probed by Direct

Detection experiments, or production at colliders. Null results of the latter then rule out

large portions of the parameter space favoured by the thermal WIMP paradigm [15–17]. If

the s-wave DM annihilation cross section remains substantial at present times, the model

can also be probed by Indirect Detection experiments. These considerations motivate ex-

ploration of richer hidden sector structures. For example, additional annihilation channels

into dark sector states can deplete the DM relic density without changing its interactions

with the visible sector while satisfying the experimental constraints [18, 19].

More generally, there is no a priori reason for the DM of the Universe to be composed

of a single field. Multi-component DM frameworks, with two or more particles contribut-

ing a non-negligible fraction to the total relic density ΩDM,toth
2 ≈ 0.12, offer interesting

perspectives. The relation between the annihilation cross section and the current detection

signals has to be properly reconsidered. Some work in this direction has been carried out

in [20, 21], where the discovery potential of the current and future experimental facilities

and the capability of discriminating multicomponent DM from single-component DM have

been studied. We note that multicomponent DM emerges in various particle physics models

(see e.g. [22–25]).

In this work, we will investigate multicomponent DM emerging from a hidden sector

endowed with gauge symmetry. Such systems enjoy natural discrete symmetries which can

act as DM stabilizers. Indeed, it was noted in [6] and detailed in [8] that a hidden sector

consisting of a U(1) gauge field Aµ and a single complex scalar which breaks the symmetry

spontaneously has the symmetry

Z2 : Aµ → −Aµ . (1.1)

As a result, the massive vector field Aµ is stable and can constitute DM. This idea gener-

alizes to non-Abelian gauge symmetries as well. In particular, hidden SU(N) sectors with a

minimal matter content necessary to break the gauge symmetry completely, that is N − 1

scalar N -plets, are endowed with a Z2 × Z ′2 symmetry [26]2

Z2 : Aaµ → (−1)naAaµ ,

Z ′2 : Aaµ → (−1)n
′
aAaµ , (1.2)

where Aaµ is the gauge field, a is the adjoint group index and na, n
′
a take on values 0,1

depending on a. One of the Z2’s corresponds to complex conjugation of the SU(N) group

elements, while the other is a gauge transformation. In the SU(2) case, the symmetry

enlarges in fact to custodial SO(3) [6] (see also [27, 28]), while for larger groups it is

part of a global unbroken U(1) × Z ′2. Since the SM fields are neutral under the above

symmetries, Aaµ cannot decay into the visible sector particles and therefore can constitute

dark matter. Note that since the symmetry is Z2×Z ′2, one expects at least two different DM

2This assumes CP -symmetry of the hidden sector scalar potential.
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components, in contrast to traditional Z2-invariant WIMP models. The exact composition

depends on the details of the spectrum. In particular, the SU(3) example studied in [26]

has only vector DM with two components being degenerate in mass and the third one being

somewhat lighter. These states interact with the visible sector through the Higgs portal

operators. A related study has recently appeared in [29].

In our current study, we explore a qualitatively different case of mixed spin DM, that is

containing both spin 1 and spin 0 components. We employ the model of [26] in a different

parametric regime, where a stable pseudoscalar is lighter than the gauge field with the

same Z2 × Z ′2 quantum numbers. In this case, the pseudoscalar as well as the gauge fields

with distinct Z2 × Z ′2 quantum numbers constitute DM. The resulting phenomenology is

very different from that of [26]. In particular, we find that there are substantial regions of

parameter space where the direct detection cross section is suppressed.

We stress that although we study a specific model of multicomponent DM, many of the

results presented here are of general relevance. In particular, depending on the composition

of DM, the direct detection signal strength varies drastically, over orders of magnitude, and

is often consistent with thermal relic DM abundance. Such behaviour is specific to more

complicated hidden sectors within our framework and reflects the possibility that common

models may oversimplify the DM properties.

One of the novel aspects of our study is that multicomponent DM is a natural con-

sequence of our UV-complete framework, due to Z2 × Z ′2 being part of the Yang-Mills

symmetries. This is in contrast to more conventional models where the two DM com-

ponents have different origins such as the mixed axion-neutralino DM scenario [30, 31].

Consequently, the contributions of the components to the total DM density are controlled

by a set of the UV parameters. In our study, much emphasis will be given to the analysis

of the DM production processes (as opposed to the approach of [20, 21]). We solve numer-

ically the coupled Boltzmann equations and calculate the individual relic abundances as

a function of the parameters of the model. The composition of DM can be very different

in different parameter regions and in some of them both DM components give comparable

contributions. We then study the Direct Detection constraints and observe an interesting

effect. As long as the SM Higgs mixes predominantly with one of the hidden scalar fields,

the direct detection is highly suppressed in the parameter regions where DM is mostly

spin-0. It can be so small that even future detectors like XENON1T [32] will not be able

to probe it. This is one of the main results of our study.

The paper is structured as follows. The model is introduced in section 2. Section 3

is devoted to a detailed discussion of the relic DM density calculations and the Direct

Detection limits. We also comment on the possibility of detecting one of the components

through Indirect Detection. Our results are summarized in section 4.

2 The SU(3) hidden sector model

The purpose of this section is to briefly summarise our model, mostly following ref. [26].

The hidden sector of the model is endowed with SU(3) gauge symmetry, which is broken

– 3 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
1

spontaneously (to nothing) by two hidden triplets φ1 and φ2. This is the minimal setup

that allows one to make all the SU(3) gauge fields massive.

The Lagrangian of the model is

LSM + Lportal + Lhidden , (2.1)

where

−LSM ⊃ VSM =
λH
2
|H|4 +m2

H |H|2 , (2.2a)

−Lportal = Vportal = λH11 |H|2|φ1|2 + λH22 |H|2|φ2|2 − (λH12 |H|2φ†1φ2 + h.c.) , (2.2b)

Lhidden = −1

2
tr{GµνGµν}+ |Dµφ1|2 + |Dµφ2|2 − Vhidden . (2.2c)

Here, Gµν = ∂µAν −∂νAµ+ ig̃[Aµ, Aν ] is the field strength tensor of the SU(3) gauge fields

Aaµ with gauge coupling g̃, Dµφi = ∂µφi + ig̃Aµφi is the covariant derivative of φi, H is the

Higgs doublet, which in the unitary gauge can be written as HT = (0, v + h)/
√

2, and the

most general renormalisable hidden sector scalar potential is given by

Vhidden(φ1, φ2) = m2
11|φ1|2 +m2

22|φ2|2 − (m2
12φ
†
1φ2 + h.c.)

+
λ1

2
|φ1|4 +

λ2

2
|φ2|4 + λ3|φ1|2|φ2|2 + λ4|φ†1φ2|2

+

[
λ5

2
(φ†1φ2)2 + λ6|φ1|2(φ†1φ2) + λ7|φ2|2(φ†1φ2) + h.c.

]
. (2.3)

The fields φ1 and φ2 are responsible for the spontaneous breaking of the hidden SU(3)

symmetry. In the unitary gauge, they can be written as

φ1 =
1√
2

 0

0

v1 + ϕ1

 , φ2 =
1√
2

 0

v2 + ϕ2

v3 + ϕ3 + iϕ4

 , (2.4)

where the vi are real VEVs and ϕi are real scalar fields. Here we assume the CP symmetry

in the scalar sector, i.e. that the couplings are real and ϕ4 attains no VEV. As a consequence

there is no mixing between the CP -even scalar fields ϕ1−3 and the CP -odd scalar ϕ4. This

allows for the possibility that ϕ4 is stable.

A minor technical complication that occurs in this model is that the quadratic part of

the Lagrangian is not diagonal, due to the mixing terms

L ⊃ g̃v2

2
Aµ 6∂µϕ4 −

g̃v3√
3
Aµ 8∂µϕ4 +

g̃v3

2
Aµ 7∂µϕ2 −

g̃v2

2
Aµ 7∂µϕ3 . (2.5)

These terms of the form κaiA
a
µ∂

µϕi can be removed by the transformation

Aaµ → Ãaµ = Aaµ + ∂µY
a, with Y a ≡ (M)−1

ab κbiϕi , (2.6)

where M is the mass matrix of the hidden gauge bosons. This leaves M unchanged.

After the above transformation the kinetic terms of the ϕi are not canonically normalised

anymore so that a further transformation

ϕi → ϕ̃i = ωikϕ
k , where (ωTω)ij ≡ δij − κTiaM−1

ab κbj , (2.7)
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is needed to make the quadratic part of the Lagrangian canonically normalised. To stress

its special role as a DM candidate, we relabel

χ ≡ ϕ̃4 . (2.8)

To simplify the analysis, in the rest of the paper we assume that the couplings

m2
12, λH12, λ6, λ7 in the scalar potential, as well as the VEV v3, are small but non-vanishing.

If they did vanish, the system would attain an additional unwanted Z2 symmetry φ2 → −φ2,

which would lead to extra stable particles and change the phenomenology of the model.

In the limit of small v3, the only gauge-scalar mixing terms are Aµ 6∂µϕ4 and Aµ 7∂µϕ3 so

that ϕ̃1 ' ϕ1 and ϕ̃2 ' ϕ2.

The mass matrix for the (pseudo)scalar fields reads:

− L ⊃ 1

2
ΦTm2

CP−evenΦ +
1

4
(λ4 − λ5) (v2

1 + v2
2)χ2, (2.9)

where Φ = (h, ϕ1, ϕ2, ϕ̃3)T . In the limit v3 � v1, v2, we get

m2
CP−even =


λHv

2 λH11vv1 λH22vv2 0

λH11vv1 λ1v
2
1 λ3v1v2 0

λH22vv2 λ3v1v2 λ2v
2
2 0

0 0 0 (λ4 + λ5)(v2
1 + v2

2)/2

 . (2.10)

We see that ϕ̃3 does not mix with the other states and is a mass eigenstate. The other

mass eigenstates are obtained by diagonalising the upper 3 × 3 sub-matrix. For further

simplification, we will assume that the (1,2) and (2,3) entries of m2
CP−even are much smaller

than the other matrix elements, which can be achieved with sufficiently small λH11 and

λ3. Then ϕ1 is approximately a mass eigenstate, which we call H (to be consistent with

the notation in ref. [26]), and m2
H = λ1v

2
1. The other two mass eigenstates are3

h1 ' cθh− sθϕ2 ,

h2 ' sθh+ cθϕ2 , (2.11)

with

m2
h1,h2

' 1

2

(
λ2v

2
2 + λHv

2
)
∓
λ2v

2
2 − λ2

Hv
2

2c2θ
,

tan 2θ ' 2λH22vv2

λ2v2
2 − λ2

Hv
2
. (2.12)

The eigenstate h1 is identified with the 125 GeV Higgs boson and, consequently, its

couplings are required to be SM-like. This translates into the requirement sθ . 0.3

(see e.g. [33]).

We now turn to the vectors. In the limit v3 � v1, v2 the vector sector is composed of

6 pure states which form 3 mass degenerate pairs with masses

m2
A1 = m2

A2 =
g̃2

4
v2

2, m2
A4 = m2

A5 =
g̃2

4
v2

1, m2
A6 = m2

A7 =
g̃2

4
(v2

1 + v2
2) , (2.13)

3We will often abbreviate sθ ≡ sin θ and cθ ≡ cos θ.
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gauge eigenstates mass eigenstates Z2 × Z ′2
h, ϕ1−3, A

7
µ h1,2,H, ϕ̃3, Ã

7
µ (+,+)

A1
µ, A

4
µ A1

µ, A
4
µ (−,−)

A2
µ, A

5
µ A2

µ, A
5
µ (−,+)

ϕ4, A
3
µ, A

6
µ, A

8
µ χ,A′3µ , Ã

6
µ, A

′8
µ (+,−)

Table 1. Z2 × Z ′
2 charges of the scalars and hidden vectors.

and two mixed eigenstates

A3 ′
µ = A3

µ cosα+A8
µ sinα ,

A8 ′
µ = A8

µ cosα−A3
µ sinα , (2.14)

where4

α =


1
2 arctan

( √
3v2

2

2v2
1−v2

2

)
for v2

2 ≤ 2v2
1

1
2 arctan

( √
3v2

2

2v2
1−v2

2

)
+ π

2 for v2
2 > 2v2

1 ,
(2.15)

so that α ∈ (0◦, 60◦). The masses are

m2
A3 ′ =

g̃2v2
2

4

(
1− tanα√

3

)
, m2

A8 ′ =
g̃2v2

1

3

1

1− tanα√
3

. (2.16)

Our setup enjoys a Z2×Z
′
2 symmetry (cf. eq. (1.2)). The Z ′2 acts as complex conjuga-

tion, which is an outer automorphism of SU(3), while the Z2 is a gauge transformation that

acts non-trivially only on the upper entry of the SU(3) triplets. They are inherent in the

Yang-Mills system and remain unbroken by interactions with matter in our minimal setting.

This discrete symmetry is in fact part of a global U(1)×Z ′2 preserved by the vacuum.

The global U(1)

U = eiβ/3 diag(e−iβ , 1, 1) (2.17)

is a subgroup of the SU(3) hidden gauge symmetry and acts on the gauge fields as Aµ →
UAµU

†. This corresponds to (A1,4, A2,5) → (cosβA1,4 − sinβA2,5, sinβA1,4 + cosβA2,5)

and leaves A3,6,7,8 invariant. The scalar sector eq. (2.3) possesses an independent global

U(1)′ symmetry φ1,2 → eiγ φ1,2. Since U acts effectively as an overall phase transformation

on the scalar fields of the form eq. (2.4), the vacuum preserves a combination of U(1) and

U(1)′. This symmetry ensures, for instance, that mA1 = mA2 and mA4 = mA5 (see [26]).

Although the unbroken symmetry is U(1)×Z ′2, for our purposes it suffices to consider

its subgroup Z2 × Z
′
2. The corresponding charges are given in table 1.

The lightest vector state is always A3 ′ . It is however not necessarily stable since

|Dµφ2|2 generates the coupling

L ⊃ (1 + r)
g̃√
3

sinα
(
χA3 ′

µ ∂
µϕ̃3 − χ↔ ϕ̃3

)
, (2.18)

4Note that this definition of α differs from that in ref. [26] for v2
2 > 2v2

1 by π
2

. With the definition used

here A3 ′
is always the lightest vector.
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Case I Case II Case III Case IV

parameter v2 < v1 v2 > v1 v2 < v1 v2 > v1

choice λ4 − λ5 small λ4 − λ5 small λ4 − λ5 ≥ O(1) λ4 − λ5 ≥ O(1)

dark matter A1
µ,A2

µ,χ A4
µ,A5

µ,χ A1
µ,A2

µ,A′3µ A4
µ,A5

µ,A′3µ

Table 2. DM composition for different parameter choices (cf. eq. (2.20)).

where

r ≡ v2
2/v

2
1 , (2.19)

allowing for the decay A3 ′ → χ+ ϕ̃3 → χ+SM if mA3 ′ > mχ. Here ϕ̃3 is produced off-shell

and leads to the SM final states since the coupling of ϕ̃3 to h1, h2 is nonzero for v3 6= 0.

The masses of A3 ′ and χ are related by

m2
χ

m2
A′3

=
λ4 − λ5

g̃2
f(r) , with f(r) =

3(r + 1)

r + 1−
√

1 + r(r − 1)
. (2.20)

The decay A3 ′ → χ + SM is thus kinematically open if λ4 − λ5 < g̃2/f(r). For r around

unity, one has f(r) = 6 +O((1− r)2), while for r � 1, f(r) ' 2/r +O(1). If one requires

χ to be part of DM, relatively small g̃ necessitates therefore very small λ4 − λ5.

In summary, our SU(3) hidden sector adds to the particle content the following states:

8 massive vector bosons, three scalars h2,H, ϕ̃3 and one pseudo-scalar χ. Given the charges

under the Z2 × Z
′
2 symmetry and the mass relations of eqs. (2.13), (2.16), (2.20), different

states can contribute to Dark Matter. The options are summarized in table 2. In all cases,

DM consists of 3 states. Since A1, A2 are degenerate in mass, one may introduce a formal

analog of the W± bosons via the linear combinations A1 ± iA2 even though A1, A2 have

different parities. We find that such a redefinition facilitates numerical computations, in

particular, what concerns the software Micromegas. This allows for the treatment of A1, A2

as an effectively single (complex) DM component. A similar redefinition can be applied to

another mass degenerate pair A4, A5 .

The four possible cases can be understood as follows. For v2 < v1 (v1 < v2) the

degenerate pair A1,2 (A4,5) is stable, because these are the lightest states with a given

non-trivial Z2 × Z
′
2 charge. The only possible decay would be of the type A1 → A2A3

which is kinematically forbidden. The other stable state of the hidden sector is either χ or

A3 ′ , depending on the value of λ4 − λ5. The purely vectorial DM case was studied in [26].

In this work, we will instead focus on case I, with mixed scalar-vector DM.

3 Multicomponent Dark Matter phenomenology

Many of the important features of our model can be obtained by taking the limit v1 � v2.

This reduces the number of states relevant to DM phenomenology to the DM candidates

A1,2 and χ, two mediators h1 and h2, and the state A3 whose mass is between that of

A1,2 and χ. We discuss this limit in the next subsection. Afterwards, we also consider the

case v1 ' v2 where all hidden states play a role and highlight the differences between these

two limits.

– 7 –
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3.1 Case v1 � v2

For v1 � v2, the mass scales of A1,2,A
′
3 on one hand and A4−7, A

′
8 on the other hand are

split, with the latter being higher by a factor of order v1/v2. The same happens in the

scalar sector where the states H, ϕ̃3 are parametrically heavier than h1,2. On the other

hand, since we are interested in a relatively light χ, we take a small enough value of λ4−λ5

to keep its mass below that of A
′
3 (cf. eq. (2.20)). In practice, v1/v2 ' 3− 5 is sufficiently

large to neglect the heavier states, while we take v1/v2 = 10 in our numerical studies.

For v1 � v2(� v3), the relevant for our purposes Lagrangian is given by

L = LDM + Lh-SM-SM + Lh-h-h , (3.1)

where we neglect the h4-type couplings which do not contribute significantly to the DM

relic density computations. Here, the DM Lagrangian, containing the mass terms and the

h1, h2 interaction terms, is

LDM =
1

2
m2
A

∑
a=1,2

AaµA
aµ − 1

2
m2
χχ

2 (3.2)

+

[
g̃ mA

2
(−h1sθ + h2cθ) +

g̃2

8

(
h2

1s
2
θ − 2h1h2sθcθ + h2

2c
2
θ

)] ∑
a=1,2

AaµA
aµ

+

[
g̃(1 + r)

2mA

(
−h1sθm

2
h1

+ h2cθm
2
h2

)
− 1

4

(
λχχ11h

2
1 + 2λχχ12h1h2 + λχχ22h

2
2

)]
χ2 ,

where

λχχ11 = (1 + r)
g̃

2mAv
sθ

(
c3
θ(m

2
h2
−m2

h1
) +

g̃v

2mA
sθ(s

2
θm

2
h1

+ c2
θm

2
h2

)

)
, (3.3a)

λχχ12 = (1 + r)
g̃

2mAv
sθcθ

(
sθcθ(m

2
h2
−m2

h1
)− g̃v

2mA
(s2
θm

2
h1

+ c2
θm

2
h2

)

)
, (3.3b)

λχχ22 = (1 + r)
g̃

2mAv
cθ

(
s3
θ(m

2
h2
−m2

h1
) +

g̃v

2mA
cθ(s

2
θm

2
h1

+ c2
θm

2
h2

)

)
. (3.3c)

The couplings of h1 and h2 to SM matter are given by

Lh-SM-SM =
h1cθ + h2sθ

v

2m2
WW

+
µ W

µ− +m2
ZZµZ

µ −
∑
f

mf f̄f

 . (3.4)

The remaining term Lh-h-h represents the trilinear couplings among h1 and h2,

Lh-h-h = −κ111

6
v h3

1 −
κ112

2
v h2

1h2 −
κ221

2
v h2

2h1 −
κ222

6
v h3

2 , (3.5)
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where

κ111 =
3m2

h1

v2

(
c3
θ − s3

θ

g̃v

2mA

)
, (3.6a)

κ112 =
2m2

h1
+m2

h2

v2
sθcθ

(
cθ + sθ

g̃v

2mA

)
, (3.6b)

κ221 =
m2
h1

+ 2m2
h2

v2
sθcθ

(
sθ − cθ

g̃v

2mA

)
, (3.6c)

κ222 =
3m2

h2

v2

(
s3
θ + c3

θ

g̃v

2mA

)
. (3.6d)

Note that the quartic couplings λH , λ2, λH22 do not explicitly appear in the above interac-

tion terms since they are fixed in terms of v,mh1 ,mh2 , sin θ, g̃ and mA:

λH =
c2
θm

2
h1

+ s2
θm

2
h2

v2
,

λ2 = g̃2
s2
θm

2
h1

+ c2
θm

2
h2

4m2
A

,

λH22 = g̃s2θ

m2
h2
−m2

h1

4vmA
. (3.7)

The couplings in eq. (3.1) therefore are a function of the 5 new physics parameters

mχ,mA,mh2 , g̃, sin θ. The hidden sector gauge coupling g̃ acts as an overall normaliza-

tion parameter for the DM interactions.

In what follows, we analyze how the DM relic density is generated as well as the

constraints and prospects for Direct DM Detection.

3.1.1 Relic density

In conventional WIMP scenarios, the DM relic density is inversely proportional to the ther-

mally averaged DM annihilation cross-section into SM fermions. In the case of multicom-

ponent DM, the situation is more involved since there are additional important processes

such as conversion of one DM component into another. This complicates the analysis and

we therefore solve the system of Boltzmann equations numerically (cf. [18, 29, 34]). The

Boltzmann equations are dictated by three types of processes:

• Pair annihilation of both DM components into SM fermions, gauge and Higgs bosons

• Conversion of one DM component into another: AA↔ χχ

• Semi–(co)annihilation (cf. [35, 36]): AA → A3h1,2 and AA3 → Ah1,2 which changes

the abundances of both the vector and the scalar component5

5A3 decays to χ + SM matter. We assume that this decay is fast enough so that we use the Boltzmann

equations with 2 DM components [37]. If this is not the case, one must add an additional equation for the

abundance of A3 to eq. (3.8).
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Aa

Aa SM

SM

h1, h2

h1, h2

Aa

Aa

h1, h2

h1, h2

Aa

Aa

h1, h2

h1, h2

Aa

Aa

Aa

h1, h2

h1, h2

Figure 1. Pair annihilation processes for the vectorial DM component.

The relevant diagrams for the annihilation processes of the two DM components are pre-

sented in figures 1–3, while the (subleading) semi-annihilation processes are not shown

explicitly. The Boltzmann equations can be written as

dYA
dx

= −〈σv〉AA→XX
(
Y 2
A − Y 2

A,eq

)
− 〈σv〉AA→χχ

(
Y 2
A −

Y 2
A,eq

Y 2
χ,eq

Y 2
χ

)
(3.8)

− 〈σv〉AA→A3h1,2

(
Y 2
A −

Yχ
Yχ,eq

Y 2
A,eq

)
,

dYχ
dx

= −〈σv〉χχ→XX
(
Y 2
χ − Y 2

χ,eq

)
+ 〈σv〉AA→χχ

(
Y 2
A −

Y 2
A,eq

Y 2
χ,eq

Y 2
χ

)

− 〈σv〉AA3→Ah1,2
YAYA3,eq

(
Yχ
Yχ,eq

− 1

)
+ 〈σv〉AA→A3h1,2

(
Y 2
A −

Yχ
Yχ,eq

Y 2
A,eq

)
,

where Yi = ni/s with ni being the corresponding number density and s being the entropy,

x = mA/T and

〈σv〉(x) =
〈σv〉s
Hx

∣∣∣
T=mA/x

, (3.9)

where H is the Hubble rate. The resulting evolution of the yields Yi for two benchmark
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χ

χ SM

SM

h1, h2

h1, h2

χ

χ

h1, h2

h1, h2

χ

χ

h1, h2

h1, h2

χ

χ

χ

h1, h2

h1, h2

Figure 2. Pair annihilation processes for the scalar DM component.

h1, h2

Aa

Aa

χ

χ

Figure 3. Vector DM to scalar DM conversion.

parameter choices is shown in figure 4. In the right panel, the relic density of the two

components evolves similarly to that of conventional WIMPs, i.e. it tracks the equilibrium

distribution at Early times until decoupling. In the left panel, we see some modifications to

this behaviour. In particular, the pseudoscalar DM components annihilates very efficiently

through the h1 resonance which depletes its energy density, while at late times the χ

fraction of the DM number density increases due to the conversion process of figure 3. In

this case, the heavier DM component gives the dominant contribution to the DM density.

Our numerical analysis (see below for more details) shows that the contribution of the

processes AA → A3h1,2 and AA3 → Ah1,2 is negligible over most of the parameter space.
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Figure 4. Solutions of the Boltzmann equations for two benchmark parameter values. In each

panel, the red and blue curves represent the abundances of the χ and A DM components, respec-

tively.

For a qualitative discussion of our numerical results, one may thus approximate the total

DM relic density by the sum of the following two contributions [38],

ΩDM,toth
2 ≈ 8.8× 10−11 GeV−2

[(
ḡ

1/2
eff,A

∫ Tf,A

T0

〈σv〉A
dT

mA

)−1

+

(
ḡ

1/2
eff,χ

∫ Tf,χ

T0

〈σv〉χ
dT

mχ

)−1
]

≈ 8.8× 10−11 GeV−2

 xf,A

ḡ
1/2
eff,A

(
aA + x−1

f,AbA

) +
xf,χ

ḡ
1/2
eff,χ

(
aχ + x−1

f,χbχ

)
 , (3.10)

where Tf,χ, Tf,A are the freeze-out temperatures of the two DM components, T0 is the

present time temperature and geff,A,χ are the effective degrees of freedom in the Early

Universe. In the second line of eq. (3.10), we have used the velocity expansion 〈σv〉 '
a+ 2b/x (using σv ' a+ bv2/3 and 〈v2〉 = 6/x, cf. e.g. [39]) and xf,i = mi/Tf,i.

6

In this work we only consider the case mχ < mA as required by our model. Indeed, A3

is always lighter than A1,2 with our SU(3) breaking mechanism and χ must be lighter than

A3 to be stable. Hence, we include the conversion process AA → χχ, but not the reverse

(at least at late times).

The relevant annihilation cross-sections are s-wave dominated, i.e. the coefficients aχ,A
are not suppressed. At leading order in velocity expansion, they read

• Pseudoscalar component:

〈σv〉χχ→f̄f =
∑
f

g̃2Nf
c

4πv2
s2

2θ

(
1−

m2
f

m2
χ

)3/2
m2
fm

4
χ

(
m2
h1
−m2

h2

)2
m2
A

(
m2
h1
− 4m2

χ

)2(
m2
h2
− 4m2

χ

)2 ,

〈σv〉χχ→W+W− =
g̃2

2πv2
s2

2θ

√
1−

m2
W

m2
χ

(
1−

m2
W

m2
χ

+
3

4

m4
W

m4
χ

)

×
m6
χ

(
m2
h1
−m2

h2

)2
m2
A

(
m2
h1
− 4m2

χ

)2(
m2
h2
− 4m2

χ

)2 ,

6This expansion is not valid in the vicinity of the s-channel poles. We note that all results presented in

this work rely on the full numerical calculation of the annihilation rates.
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〈σv〉χχ→ZZ =
g̃2

4πv2
s2

2θ

√
1−

m2
Z

m2
χ

(
1−

m2
Z

m2
χ

+
3

4

m4
Z

m4
χ

)

×
m6
χ

(
m2
h1
−m2

h2

)2
m2
A

(
m2
h1
− 4m2

χ

)2(
m2
h2
− 4m2

χ

)2 . (3.11)

• Vector component:

〈σv〉AA→f̄f =
∑
f

g̃2Nf
c

48πv2
s2

2θ

(
1−

m2
f

m2
A

)3/2
m2
fm

2
A

(
m2
h1
−m2

h2

)2(
m2
h1
− 4m2

A

)2(
m2
h2
− 4m2

A

)2 ,

〈σv〉AA→W+W− =
g̃2

24πv2
s2

2θ

√
1−

m2
W

m2
A

(
1−

m2
W

m2
A

+
3

4

m4
W

m4
A

)

×
m4
A

(
m2
h1
−m2

h2

)2(
m2
h1
− 4m2

A

)2(
m2
h2
− 4m2

A

)2

〈σv〉AA→ZZ =
g̃2

48πv2
s2

2θ

√
1−

m2
Z

m2
A

(
1−

m2
Z

m2
A

+
3

4

m4
Z

m4
A

)

×
m4
A

(
m2
h1
−m2

h2

)2(
m2
h1
− 4m2

A

)2(
m2
h2
− 4m2

A

)2 ,

〈σv〉AA→χχ =
g̃4

768πm2
A

√
1−

m2
χ

m2
A

×
(
m2
h1
m2
h2
− 2m2

A(m2
h1

+m2
h2

) + 2m2
A(m2

h1
−m2

h2
)c2θ

)2(
m2
h1
− 4m2

A

)2(
m2
h2
− 4m2

A

)2 . (3.12)

The “dark” annihilation process AA → χχ can be the most efficient A-annihilation

channel since it is not suppressed by sin2 2θ, which is subject to rather tight experimental

constraints [33]. This is because the process involves only the dark sector states. As a result,

the annihilation cross-section of the vector DM component is often enhanced compared to

that of the scalar component.

In figure 5, we show the contribution of the vector component to the total DM relic

density, fA = ΩA/ΩDM,tot, in the plane (mχ,mA) with fixed g̃, sθ and mh2 . We distinguish

the following three regions: fA < 0.1 (blue), 0.1 < fA < 0.5 (light blue), 0.5 < fA < 0.9

(light red) and fA > 0.9 (red). The correct DM relic density is only reproduced in the

black regions, so the purpose of the plot is to help understand how the composition of DM

evolves as a function of parameters.

Since the total DM relic density is given approximately by eq. (3.10) and xf,A ≈ xf,χ,
√
ḡeff,A ≈

√
ḡeff,χ, fA mostly depends on the ratio of the pair annihilation cross-sections of

the two DM components:

fA ≈
〈σv〉χ
〈σv〉A

1 +
〈σv〉χ
〈σv〉A

. (3.13)
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Figure 5. The ratio fA = ΩA/Ωtot in the (mχ,mA)-plane, for sin θ = 0.1, mh2 = 500 GeV and

g̃ = 0.2 (left) respectively g̃ = 1 (right). The blue, light blue, light red and red regions correspond

to fA < 0.1, 0.1 < fA < 0.5, 0.5 < fA < 0.9 and fA > 0.9, respectively. In the black regions, the

observed total DM relic density is correctly reproduced at the 3 σ level.

An obvious feature of figure 5, which follows immediately from the above equation, is that

the Aµ DM component dominates when χ annihilates resonantly, and vice versa. For the

regions away from the resonances, a closer inspection of
〈σv〉χ
〈σv〉A is required.

Let us identify qualitative features of
〈σv〉χ
〈σv〉A . For the mass range shown in the plot,

〈σv〉χ is dominated by 〈σv〉χχ→b̄b for mW > mχ and by 〈σv〉χχ→WW for mW < mχ.7 〈σv〉A
has contributions from annihilation to both dark and visible sector final states. Which one

dominates depends mostly on the ratio tan θ/g̃. For instance, one has

〈σv〉AA→W+W−

〈σv〉AA→χχ
= 8

tan2 θ

g̃2

m2
A

v2

(
1−

m2
χ

m2
A

)−1/2

×

(
1 +O

(
m2
W

m2
A

,
m2
h1

4m2
A

,
m2
h1

m2
h2

))
. (3.14)

The ratio
〈σv〉AA→b̄b
〈σv〉AA→χχ has an additional m2

b/m
2
χ suppression factor.

• From eq. (3.14) we see that in the right plot, where g̃ � sin θ, the dark annihilation

AA → χχ dominates in most mass regions. An exception is the region where Aµ is

not much heavier than χ so that the dark annihilation is phase-space suppressed.

– For mχ > mW , the ratio
〈σv〉χ
〈σv〉A becomes

〈σv〉χχ→W+W−

〈σv〉AA→χχ
= (3.15)

96
tan2 θ

g̃2

m2
χ

v2

(
m2
h2
− 4m2

A

)2(
m2
h2
− 4m2

χ

)2

(
1 +O

(
m2
W

m2
χ

,
m2
h1

4m2
χ

,
m2
h1

m2
h2

,
m2
χ

m2
A

))
.

7There is also a sizeable contribution from the t̄t channel for mχ > mt.
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For most parameter ranges of interest, the Aµ annihilation cross section is much

larger than that for χ. As a result, fA < 0.1. This does not however apply

to the region m2
A � m2

h2
/4 (upper part of the plot) in which case the factor

(2mA/mh2)4 can compensate the small ratio (tan θ/g̃)2.

– For mχ < mW , the χ annihilation cross section is suppressed by the b-quark

mass. The resulting
〈σv〉χ
〈σv〉A and fA are small unless χ annihilates resonantly.

• In the left plot, sin θ and g̃ have similar sizes so that the visible and dark Aµ anni-

hilation channels play in general comparable roles. Two features are clearly visible:

resonant Aµ annihilation or b-quark mass suppression of 〈σv〉χ for mW > mχ lead to

small fA.

We find that the correct relic DM density typically requires sizable g̃ and sθ. If g̃ is too

small, the χ DM component is overproduced. As seen in figure 5, at g̃ = 0.2 one must resort

to resonant χ annihilation to keep its density under control. The DM composition is very

sensitive to the exact χ-mass in this case. With a larger gauge coupling, g̃ = 1, the correct

relic density is achieved in substantial regions of parameter space. We find numerically

that both DM components can be as heavy as a few hundred GeV, while g̃sθ & 0.01 is

required to keep the χ-annihilation efficient. While qualitative features of the plot can be

understood semi-analytically, we have performed our numerical analysis using the software

Micromegas [40] which is well suited for 2 component DM.

In figure 6, we show the contours of correct DM relic density in the (mA, g̃)-plane (left

panels) and (mχ, g̃)-plane (right panels). The color coding along the contours indicates the

value of fA: the red (blue) end of the spectrum refers to vector (pseudoscalar) dominance.

Many features of the plots can be understood qualitatively. In the upper left panel, the

dark annihilation process AA→ χχ is important, yet the resulting χ states annihilate very

efficiently through the h1 resonance into the SM fields. As a result, DM is mostly vector

(apart from the small region mA ' mh2/2). The necessary g̃ at sin θ = 0.1 is smaller than

that in [26] due to the availability of the dark annihilation channel, albeit it remains in the

same ballpark of O(10−1). In the right upper panel, the χ mass moves a bit further from

the center of the h1 resonance, which changes the DM composition and requires somewhat

larger gauge couplings. Nevertheless, the resonance is still efficient and allows one to obtain

the correct relic density with a relatively small g̃.

In the lower panels, the relic density band has the resonant structure similar to that

of [26]. The narrow h1 resonance at mχ ' mh1/2 is followed by a much broader8 resonance

around mh2/2. The kinks in the band represent new annihilation channels becoming kine-

matically available, e.g. χχ → h1h1. In most regions away from the tip of the resonance,

DM is predominantly pseudoscalar.

Besides the prospects for direct detection, which will be discussed in the following

subsection, figure 6 displays the limits from perturbativity of the quartic (λi < 4π) and

gauge (g̃2
i < 4π) couplings as well as those from the invisible decay of the 125 GeV Higgs

boson. While the former has almost no impact on the region with the correct DM relic

density, the latter excludes light values of mχ below approximately 50 GeV.

8The reason is the large width of h2 due to many available decay channels as well as the thermal averaging

effect which makes DM annihilation efficient even away from mh2/2.
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Figure 6. Dark matter constraints in the plane (mA, g̃) (upper panel) and (mχ, g̃) (lower panel)

for v1 � v2. The blue-red band indicates the correct relic DM density with the blue (red) end of

the spectrum referring to the spin-0 (spin-1) component dominance. The other curves mark the

following constraints: grey – perturbativity, purple – invisible Higgs decay, green – LUX 2016 direct

DM detection, orange – XENON1T direct DM detection prospects.

3.1.2 Direct detection

In this subsection, we discuss the limits from the LUX experiment [41], as well as prospects

for direct detection in XENON1T [32]. The interactions of the pseudoscalar and vector DM

components with nuclei are vastly different, thus it is convenient to discuss them separately.

• Scattering of the χ component.

The spin-independent (SI) χ-nucleon scattering cross-section vanishes at tree-level in

the limit of low momentum transfer:

σχN ' 0 . (3.16)

Thus, the pseudoscalar DM component appears to hide from detection, albeit in

a different manner compared to the known mechanisms which rely on the pseudo-

scalar/axial-vector mediators [42, 43] or on the cancellation between the t-channel

h1 and h2 diagrams in case of similar masses of h1 and h2 [13]. In our case, the
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suppression results from a cancellation between the t-channel h1, h2 contributions,

but it is effective for any mh2 . The reason for this are the particular h1, h2 couplings

to χ, which are inherent in our model,

L ⊃ (1 + r)
g̃

2mA

(
−h1m

2
h1
sθ + h2m

2
h2
cθ
)
χ2 , (3.17)

as well as the h1, h2 couplings to SM matter.

Since this is an important feature of this model, let us discuss the origin of this

‘blind’ spot in the χ–N scattering in more detail. To this end, let us consider now

the χ-nucleon interaction the interaction basis, i.e. before diagonalising the scalar

mass matrix. The pseudoscalar χ interacts with the scalars ϕ1 and ϕ2 of the dark

sector and h of the Standard Model, while only the latter couples to quarks. In the

interaction basis, the effective χχNN coupling is

gχχNN = (~κχ)†(m2)−1~κf , (3.18)

with

~κχ ∝

 v λH22

v1(λ3 + λ4 − λ5)

v2 λ2

 , ~κf ∝

 k

0

0

 . (3.19)

Here ~κχ represents the χ couplings to h,ϕ1 and ϕ2; ~κf gives the fermion couplings of

h,ϕ1 and ϕ2; m2 is the upper left 3×3 block of the CP -even state mass matrix given

in eq. (2.10). One now easily finds that

gχχNN ∝ λH11λ2 − λH22λ3 . (3.20)

We see that the reason for σχN ' 0 is that we have taken λH11, λ3 to be negligible.

In other words, we have assumed that only one scalar mixing is significant, that is,

between h and ϕ2, while the ϕ1−ϕ2 and h−ϕ1 ones are very small. Although this is

just a simplifying assumption, it is meaningful as one does not expect all the couplings

to be equally significant. The corresponding region of parameter space represents an

“alignment limit” where the 3×3 mass matrix turns effectively into a 2×2 one. This

yields a simple calculable model, which could perhaps be justified in a framework of

a more sophisticated UV completion. Were we to relax our assumption, we would

get contributions which are suppressed by the ϕ1 − ϕ2 and h− ϕ1 mixing angles.

• Scattering of the Aµ component.

The t-channel exchange of h1, h2 leads to the following SI scattering cross-section

on nucleons:

σAN =
g̃2µ2

AN

4π
s2
θc

2
θ

(
1

m2
h1

− 1

m2
h2

)2(
fpZ/A+ fn(1− Z/A)

)2
, (3.21)

where µAN = mAmN/(mA +mN ) and

fN =
mN

v

 ∑
q=u,d,s

fNTq +
6

27
fNTG

 , where N = n, p (3.22)
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parametrizes the Higgs-nucleon coupling. (For an up-to-date determination of fN
see e.g. [44].) In the above expression fNTq denotes the contribution of quark q to the

mass of the nucleon N and fNTG = 1−
∑

q=u,d,s f
N
Tq

.

Since the SI scattering of χ on nuclei is suppressed, the Direct Detection limits are

obtained by comparing the experimental limits to the rescaled cross-section fAσNA. The

current limits from the LUX experiment and the projected sensitivity of XENON1T are

shown in figure 6 by green and orange contours, respectively, assuming the exposure time

considered in [41]. As discussed in the previous subsection, the χ component typically

dominates the relic DM density which renders the current and future Direct Detection

constraints weak to irrelevant.

Furthermore, even the regions dominated by the vector DM component are hard to

probe unless one employs 1 ton detectors and a few years of exposure. This is in contrast

to “typical” Higgs portal DM models (see e.g. [26]). One reason for the difference is that

our setup allows for dark annihilation AA→ χχ which can be dominant. The presence of

this additional channel lowers the gauge coupling g̃ required by the correct relic abundance

thereby diminishing the relevance of Direct DM Detection. In addition, a low value of sin θ

provides another suppression factor compared to the analysis of [26].

Finally, let us note that the unusual shape of the LUX/XENON constraints in figure 6

is due to the non-trivial composition of dark matter. For instance, keeping mA and mχ

fixed while increasing g̃ changes the DM composition factor fA. At large enough g̃, the

dark annihilation channel typically dominates which makes DM mostly pseudoscalar and

thus not prone to Direct Detection. This feature is clearly visible in the plots.

3.2 Case v1 ' v2

In this subsection, we repeat our analysis for v1 ' v2. More specifically, we take v1 = 1.2 v2

in our numerical studies. The main difference from the previous case is that all hidden

gauge bosons have comparable masses now, cf. eq. (2.13). Also the scalars H, ϕ̃3 are

expected to be as heavy as h1, h2. However, we will focus on the parameter region where

H, ϕ̃3 are heavier than the other scalars and their effect can be neglected for our purposes.

This is a simplifying assumption which makes our numerical analysis tractable.

3.2.1 Relic density

Although the general structure of the Boltzmann equations (3.8) is not altered, the larger

number of processes makes a semi-analytic treatment very complicated in the case v1 ∼ v2.

Therefore we only perform the full numerical analysis with Micromegas. Compared to the

v1 � v2 case, the following additional processes occur:

• The gauge bosons A4−7, A′8, which are not decoupled now, act as additional mediators

of annihilation processes and therefore can enhance the annihilation rates of the vector

DM component.9

9For v1/v2 very close to 1, coannihilation processes involving for example A4 and A1 play a

role. For v1/v2 = 1.2, such processes are unimportant since they are typically suppressed by

exp (−xf (mA4 −mA)/mA) ' 0.02.
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Figure 7. Dark matter constraints as in figure 6 for v1 = 1.2 v2..

• Kinetic mixing terms give rise to additional interactions which scale approximately

as m2
χ/m

2
A. Their impact is thus limited unless the two DM components have simi-

lar masses.

• Self-interaction of the Ai states could a priori lead to a sizeable effect. Our numerical

analysis shows, however, that this is not the case.

In figure 7, we show the regions of correct DM relic density, for the same sets of param-

eters as in figure 6 (apart from v1 = 1.2 v2). We see that the isocontours of correct relic

abundance do not differ substantially from those for the case v1 � v2.

3.2.2 Direct detection

As seen from figure 7, the Direct Detection limits change substantially. Even though there

is a cancellation in σχN as described before, for v1 ∼ v2 it is incomplete. The mixing

term Aµ 6∂µχ is now important since Aµ 6 does not decouple. Eliminating this term by

field redefinition leads to an additional coupling that scales as m−2
A6 . The resulting χ–N

scattering cross section is then

σχN
σAN

'
m2
χ

m2
A

(
v2

2

v2
1 + v2

2

)2

, (3.23)
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where σAN is given by eq. (3.21). Unlike in the case v1 � v2 (i.e. mA6 � mA), this

cross section is significant. Note that σχN is suppressed by the factor m2
χ/m

2
A with respect

to σAN .

In the presence of non-negligible scattering cross-sections for both DM components,

the analysis of the Direct Detection limits is not straightforward. Such limits are normally

given in terms of the DM-nucleon scattering cross-section as a function of the DM mass.

In our case, one should compare directly the experimental outcome, i.e. the distribution of

events with respect to the recoil energy, with the theoretical prediction

dN

dER
=
∑
i=χ,A

fi

(
dN

dER

)
i

. (3.24)

Here fi = Ωi/Ωtot and(
dN

dER

)
i

=
σiNρ0

2m2
Rmi

F 2
i (ER)

∫ ∞
vmin(ER)

f(vi)

vi
dvi , (3.25)

with ρ0 being the experimental value of the local DM density; mR is the reduced mass

of the DM-nucleus system, Fi(ER)2 is the form-factor due to the finite size of the nucleus

(normalized to Fi(0)2 = 1), and f(vi) is the DM velocity distribution in the detector frame.

A detailed discussion of the Direct Detection limit interpretation for multicomponent DM

is given in [20, 21]. Here we have adopted a simple approximate procedure. We have

computed the total number of recoil events, obtained by integrating the distribution of

eq. (3.24)10 over a suitable range of recoil energies and multiplied the result with the

number of nuclei and the exposure time in a given experiment. Given the design similarity

between the LUX and XENON1T experiments, we have assumed the upper limit of 3

events for both (with two years of exposure time) [45]. This number takes into account the

detector efficiency which is set to 1 in Micromegas.

It is seen from figure 7 that the contribution from the pseudoscalar component tightens

the limits from DD. Yet, the thermal DM relic density band is still out of reach of LUX.

The relevant Direct Detection suppression factors include a low value of sin θ, m2
χ/m

2
A for

a light χ component as well as a relatively small g̃ in the domain of the broad resonance

mχ ∼ O(mh2/2). We find that these factors are efficient enough to make the detection

of a light χ beyond the reach of XENON1T, while some regions with a heavier χ can be

probed. This differs from the pure vector DM case considered in [26].

3.3 Complementarity of direct and indirect detection

In this subsection, we briefly explore the possibility of observing one DM component in

Indirect Detection (ID) experiments and the other one through Direct Detection.

As seen in eqs. (3.11), (3.12), the pair annihilation cross-sections are s-wave dominated

and suffer no velocity suppression. Therefore, both the pseudoscalar and the vector DM

10The correct number of recoil events is actually given by the convolution of eq. (3.24) with a function

accounting for the detector efficiency and finite energy resolution [45, 46]. Neglecting this function implies

an overestimate of the number of recoil events for a given scattering cross-section. We have suitably chosen

the limit number of events to partially compensate this effect.
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Figure 8. Prospects of detecting directly the vector DM component and indirectly the pseudoscalar

DM component. The red band corresponds to the correct total DM relic density, the orange dashed

line represents projected DD limits from XENON1T with a 2 year exposure time and the dashed

green line shows projected ID limits from FERMI [47] with 10 years of data taking [48].

components can potentially generate an ID (photon) signal from the b̄b, t̄t,W+W−, ZZ, hh

final states. However, as explained in the previous subsections, the vector component often

annihilates into χχ most efficiently. As a result, the ID signal would be suppressed and thus

only the pseudoscalar component could potentially be detected. This situation reverses in

Direct Detection since the σχN cross section is too small.

While a detailed analysis is beyond the scope of this work, we illustrate this point

with the following example (figure 8). We take mh2 = 850 GeV, mA = 450 GeV, sθ = 0.1

and focus on the range 50–300 GeV for the χ mass. These parameters are chosen in order

to have a large pseudoscalar component since the ID rate scales with the square of the

DM density.

We see that there are two small regions in figure 8 where both ID and DD signals could

be detected. The first one is close to the h1 resonance, i.e. for mχ ' 60 GeV. This region

may in fact be compatible with the Galactic Center gamma-ray excess [49–54] although

reproducing it in vicinity of the s-channel resonances is in general rather contrived [55].

The second region corresponds to masses mχ ∼ 170− 230 GeV. In this region, the density

fraction of the vectorial DM component is very low, for example, fA ≈ 0.02 at mχ =

170 GeV. This is compensated by the high DD cross section since the correct relic density

requires g̃ ' 1. Specifically, for mA = 450 GeV and mχ = 170 GeV, one has fAσNA ≈
7.5× 10−47 cm2.

A complication here is that it is very difficult to prove that DD and ID signals come

from particles with different masses. One obstacle is the large uncertainty (hundreds of

GeV) in the DM mass determination through Direct Detection (cf. eg. [56]). This stems
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from the very weak dependence of the spectrum of recoil events on the DM mass (for heavy

DM). Thus, in practice it would be challenging to prove that Dark Matter is indeed mul-

ticomponent.

Further information which can help deciphering the DM composition would be provided

by collider experiments. In particular, in certain kinematic regimes, e.g. mh2 > 2mA and

mh2 < 300 GeV, the LHC monojet events with missing energy will be able to probe the

hidden sector gauge coupling in the range O(10−1) − O(1) [57]. Similar constraints are

obtained in Vector Boson Fusion [58] (see also [59]). Other channels can provide further

probes, which will be studied elsewhere.

4 Conclusions

We have studied a simple UV complete set-up which entails naturally multicomponent

Dark Matter with spin-1 and spin-0 constituents. The symmetry that stabilizes DM is not

put in by hand, but is instead inherent in the Yang-Mills system. The model belongs to the

Higgs portal category with the hidden sector consisting of SU(3) Yang-Mills fields as well

as the minimal Higgs content to break this symmetry completely. Upon spontaneous gauge

symmetry breaking, the system retains a global U(1) × Z ′2 symmetry (assuming unbroken

CP in the hidden sector). We focus on its discrete subgroup Z2×Z ′2 which can be regarded

as a DM stabilizer making the lightest vector fields and a pseudoscalar stable. These play

the role of multicomponent Dark Matter.

Even though the theory is rather simple in the UV, the DM phenomenology is very

rich offering a number of qualitatively different parametric regimes. For instance, the

“dark annihilation” channel, where the heavier DM component pair-annihilates into the

lighter component, can play an important role. Dark Matter can be mostly spin-1, mostly

spin-0 or mixed. An attractive feature of the model is that the Direct DM Detection rate

is suppressed as long as the SM Higgs mixes predominantly with a single scalar of the

hidden sector. This phenomenon is qualitatively different from the known DD suppression

mechanisms. We find that in many regions of parameter space, the Direct Detection rate

is well below the LUX2016 (and sometimes XENON1T) constraint while still consistent

with the thermal WIMP paradigm.

This shows, in particular, that the Higgs portal Dark Matter framework offers a number

of viable options and the WIMP paradigm is not necessarily in crisis.
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