4,635 research outputs found

    Low Risk Technique for Sample Acquisition from Remote and Hazardous Sites on a Comet

    Get PDF
    This paper describes a mission comet sampling strategy, known as CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return), which was proposed for NASA New Frontiers 2017. The proposal was led by Applied Physics Lab (APL) with partners Goddard Space Flight Center (GSFC) and Deutsches Zentrum fr Luft- und Raumfahrt (DLR). The mission concept is to launch a projectile from a satellite that is capable of gathering a 300 cc sample. The projectile is tethered and is reeled back to the spacecraft after gathering the sample. Once back at the spacecraft, a robotic manipulator extracts the sample cartridge and places the cartridge into an earth return vehicle (ERV). This method has the following favorable characteristics: 1. Places the mission at minimal risk by isolating the spacecraft from the comet 2. Allows access to remote and otherwise inaccessible locations 3. Permits deep penetration into the surfac

    Universal spectral form factor for chaotic dynamics

    Full text link
    We consider the semiclassical limit of the spectral form factor K(τ)K(\tau) of fully chaotic dynamics. Starting from the Gutzwiller type double sum over classical periodic orbits we set out to recover the universal behavior predicted by random-matrix theory, both for dynamics with and without time reversal invariance. For times smaller than half the Heisenberg time THf+1T_H\propto \hbar^{-f+1}, we extend the previously known τ\tau-expansion to include the cubic term. Beyond confirming random-matrix behavior of individual spectra, the virtue of that extension is that the ``diagrammatic rules'' come in sight which determine the families of orbit pairs responsible for all orders of the τ\tau-expansion.Comment: 4 pages, 1 figur

    The upgraded Polaris powder diffractometer at the ISIS neutron source

    Get PDF
    This paper describes the design and operation of the Polaris time-of-flight powder neutron diffractometer at the ISIS pulsed spallation neutron source, Rutherford Appleton Laboratory, UK. Following a major upgrade to the diffractometer in 2010-2011, its detector provision now comprises five large ZnS scintillator-based banks, covering an angular range of 6\ub0 ≤ 2θ ≤ 168\ub0, with only minimal gaps between each bank. These detectors have a substantially increased solid angle coverage (ω ∼5.67 sr) compared to the previous instrument (ω ∼0.82 sr), resulting in increases in count rate of between 2 7 and 10 7, depending on 2θ angle. The benefits arising from the high count rates achieved are illustrated using selected examples of experiments studying small sample volumes and performing rapid, time-resolved investigations. In addition, the enhanced capabilities of the diffractometer in the areas of in situ studies (which are facilitated by the installation of a novel design of radial collimator around the sample position and by a complementary programme of advanced sample environment developments) and in total scattering studies (to probe the nature of short-range atomic correlations within disordered crystalline solids) are demonstrated

    Jamming Model for the Extremal Optimization Heuristic

    Full text link
    Extremal Optimization, a recently introduced meta-heuristic for hard optimization problems, is analyzed on a simple model of jamming. The model is motivated first by the problem of finding lowest energy configurations for a disordered spin system on a fixed-valence graph. The numerical results for the spin system exhibit the same phenomena found in all earlier studies of extremal optimization, and our analytical results for the model reproduce many of these features.Comment: 9 pages, RevTex4, 7 ps-figures included, as to appear in J. Phys. A, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Galaxies in N-body simulations: overcoming the overmerging problem

    Get PDF
    We present analysis of the evolution of dark matter halos in dense environments of groups and clusters in dissipationless cosmological simulations. The premature destruction of halos in such environments, known as the overmerging, reduces the predictive power of N-body simulations and makes difficult any comparison between models and observations. We analyze the possible processes that cause the overmerging and assess the extent to which this problem can be cured with current computer resources and codes. Using both analytic estimates and high resolution numerical simulations, we argue that the overmerging is mainly due to the lack of numerical resolution. We find that the force and mass resolution required for a simulated halo to survive in galaxy groups and clusters is extremely high and was almost never reached before: ~1-3 kpc and 10^8-10^9 Msun, respectively. We use the high-resolution Adaptive Refinement Tree (ART) N-body code to run cosmological simulations with the particle mass of \approx 2x10^8/h Msun} and the spatial resolution of \approx 1-2/h kpc, and show that in these simulations the halos do survive in regions that would appear overmerged with lower force resolution. Nevertheless, the halo identification in very dense environments remains a challenge even with the resolution this high. We present two new halo finding algorithms developed to identify both isolated and satellite halos that are stable (existed at previous moments) and gravitationally bound. To illustrate the use of the satellite halos that survive the overmerging, we present a series of halo statistics, that can be compared with those of observed galaxies. (Abridged)Comment: Accepted for publication in ApJ, substantional revisions after the first version, LaTeX 23 pages, 18 figs. (uses emulateapj.sty), Full-resolution version of Fig.9 is available upon reques

    The Threat of Capital Drain: A Rationale for Public Banks?

    Get PDF
    This paper yields a rationale for why subsidized public banks may be desirable from a regional perspective in a financially integrated economy. We present a model with credit rationing and heterogeneous regions in which public banks prevent a capital drain from poorer to richer regions by subsidizing local depositors, for example, through a public guarantee. Under some conditions, cooperative banks can perform the same function without any subsidization; however, they may be crowded out by public banks. We also discuss the impact of the political structure on the emergence of public banks in a political-economy setting and the role of interregional mobility

    A deep learning approach for the 3D reconstruction of dust density and temperature in star-forming regions

    Get PDF
    Funding: The team in Heidelberg acknowledges funding from the European Research Council via the ERC Synergy Grant “ECOGAL” (project ID 855130), from the German Excellence Strategy via the Heidelberg Cluster of Excellence (EXC 2181 - 390900948) “STRUCTURES”, and from the German Ministry for Economic Affairs and Climate Action in project “MAINN” (funding ID 50OO2206). They also thank for computing resources provided by The Länd and DFG through grant INST 35/1134-1 FUGG and for data storage at SDS@hd through grant INST 35/1314-1 FUGG.Aims. We introduce a new deep learning approach for the reconstruction of 3D dust density and temperature distributions from multi-wavelength dust emission observations on the scale of individual star-forming cloud cores (< 0.2 pc). Methods. We construct a training data set by processing cloud cores from the Cloud Factory simulations with the POLARIS radiative transfer code to produce synthetic dust emission observations at 23 wavelengths between 12 and 1300 µm. We simplify the task by reconstructing the cloud structure along individual lines of sight and train a conditional invertible neural network (cINN) for this purpose. The cINN belongs to the group of normalising flow methods and is able to predict full posterior distributions for the target dust properties. We test different cINN setups, ranging from a scenario that includes all 23 wavelengths down to a more realistically limited case with observations at only seven wavelengths. We evaluate the predictive performance of these models on synthetic test data. Results. We report an excellent reconstruction performance for the 23-wavelengths cINN model, achieving median absolute relative errors of about 1.8% in log(ndust/m−3) and 1% in log(Tdust/K), respectively. We identify trends towards overestimation at the low end of the density range and towards underestimation at the high end of both density and temperature, which may be related to a bias in the training data. Limiting coverage to a combination of only seven wavelengths, we still find a satisfactory performance with average absolute relative errors of about 3.3% and 2.5% in log(ndust/m−3) and log(Tdust/K). Conclusions. This proof of concept study shows that the cINN-based approach for 3D reconstruction of dust density and temperature is very promising and even feasible under realistic observational constraints.Peer reviewe

    Length of carotid stenosis predicts peri-procedural stroke or death and restenosis in patients randomized to endovascular treatment or endarterectomy.

    Get PDF
    BACKGROUND: The anatomy of carotid stenosis may influence the outcome of endovascular treatment or carotid endarterectomy. Whether anatomy favors one treatment over the other in terms of safety or efficacy has not been investigated in randomized trials. METHODS: In 414 patients with mostly symptomatic carotid stenosis randomized to endovascular treatment (angioplasty or stenting; n = 213) or carotid endarterectomy (n = 211) in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), the degree and length of stenosis and plaque surface irregularity were assessed on baseline intraarterial angiography. Outcome measures were stroke or death occurring between randomization and 30 days after treatment, and ipsilateral stroke and restenosis ≥50% during follow-up. RESULTS: Carotid stenosis longer than 0.65 times the common carotid artery diameter was associated with increased risk of peri-procedural stroke or death after both endovascular treatment [odds ratio 2.79 (1.17-6.65), P = 0.02] and carotid endarterectomy [2.43 (1.03-5.73), P = 0.04], and with increased long-term risk of restenosis in endovascular treatment [hazard ratio 1.68 (1.12-2.53), P = 0.01]. The excess in restenosis after endovascular treatment compared with carotid endarterectomy was significantly greater in patients with long stenosis than with short stenosis at baseline (interaction P = 0.003). Results remained significant after multivariate adjustment. No associations were found for degree of stenosis and plaque surface. CONCLUSIONS: Increasing stenosis length is an independent risk factor for peri-procedural stroke or death in endovascular treatment and carotid endarterectomy, without favoring one treatment over the other. However, the excess restenosis rate after endovascular treatment compared with carotid endarterectomy increases with longer stenosis at baseline. Stenosis length merits further investigation in carotid revascularisation trials

    Generalized Contour Dynamics: A Review

    Get PDF
    Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow
    corecore