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ABSTRACT

Aims. We introduce a new deep-learning approach for the reconstruction of 3D dust density and temperature distributions from multi-
wavelength dust emission observations on the scale of individual star-forming cloud cores (<0.2 pc).
Methods. We constructed a training data set by processing cloud cores from the Cloud Factory simulations with the POLARIS
radiative transfer code to produce synthetic dust emission observations at 23 wavelengths between 12 and 1300µm. We simplified the
task by reconstructing the cloud structure along individual lines of sight (LoSs) and trained a conditional invertible neural network
(cINN) for this purpose. The cINN belongs to the group of normalising flow methods and it is able to predict full posterior distributions
for the target dust properties. We tested different cINN setups, ranging from a scenario that includes all 23 wavelengths down to a more
realistically limited case with observations at only seven wavelengths. We evaluated the predictive performance of these models on
synthetic test data.
Results. We report an excellent reconstruction performance for the 23-wavelength cINN model, achieving median absolute relative
errors of about 1.8% in log(n/m−3) and 1% in log(Tdust/K), respectively. We identify trends towards an overestimation at the low end
of the density range and towards an underestimation at the high end of both the density and temperature values, which may be related
to a bias in the training data. After limiting our coverage to a combination of only seven wavelengths, we still find a satisfactory
performance with average absolute relative errors of about 2.8% and 1.7% in log(n/m−3) and log(Tdust/K).
Conclusions. This proof-of-concept study shows that the cINN-based approach for 3D reconstruction of dust density and temperature
is very promising and it is even compatible with a more realistically constrained wavelength coverage.

Key words. methods: statistical – stars: formation – dust, extinction

1. Introduction

A fundamental limitation of astronomical observations is that
they only give access to the two-dimensional (2D) projection of
cosmic structures onto the plane of the sky. Consequently, it is a
central theme of modern astronomical and astrophysical research
to resolve this degeneracy and try to reconstruct the underly-
ing three-dimensional (3D) structures. When measuring lines,
for example, we can take spectra at equally spaced positions
within the area of interest and build a 3D cube of position-
position-velocity (i.e. line-of-sight velocity) information. This
PPV data is often used as an approximation for the intrinsic 3D
position-position-position (PPP) structure of the emitting region
(for further discussions, see e.g. Ballesteros-Paredes & Mac Low
2002; Beaumont et al. 2013). However, what to do when we are

relying on continuum radiation, such as the thermal emission
from interstellar dust grains (e.g. Molinari et al. 2010; Planck
Collaboration XI 2014), is less clear. To address this challenge,
we present a new deep learning approach for the reconstruction
of 3D morphological information and employ multi-band obser-
vations in the wavelength regime from 12 to 1300µm to estimate
the 3D spatial distribution of dust density and temperature of
star-forming cloud cores.

Thermal emission from interstellar dust grains is the domi-
nant source of radiation across the sky at mid- and far-infrared
wavelengths (see Hill et al. 2018, and references therein). This
is the result of dust grains distributed throughout the interstellar
medium (ISM), which are heated primarily by starlight and cool
through thermal radiation (Tielens 2010; Draine 2011; Klessen &
Glover 2016). The dust grains are heated to temperatures between
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roughly 20 and 200 K depending on the spectrum and inten-
sity of the interstellar radiation field and the size and optical
properties of the grains (see Galliano et al. 2018, for a recent
review).

Dust emission remains optically thin at relatively high col-
umn densities (see, e.g. Planck Collaboration XIX 2011), hence,
it provides a crucial observable to study regions of the uni-
verse that are not accessible at visible wavelengths. Observations
of the dust thermal emission have been used to characterise
the evolution of the universe through the study of the cosmic
infrared background (CIB, see Hauser & Dwek 2001). Radi-
ation at far infrared wavelengths registered by the Herschel
satellite has allowed for the reconstruction of star formation
activity across the Milky Way disk (Molinari et al. 2016; Elia
et al. 2021) and within nearby star-forming regions (André et al.
2010). Polarised dust thermal emission observed by the Planck
satellite has provided the opportunity to infer the first whole-
sky map of the projected Galactic magnetic field (see, e.g.
Planck Collaboration XXXV 2016).

Interstellar dust also plays many critical roles in galactic evo-
lution. It is a catalyser for the formation of molecular hydrogen
(H2), while sequestering select elements in solid grains (see, e.g.
Gould & Salpeter 1963 or Jones & Ysard 2019). The interaction
between dust grains and ultraviolet (UV) starlight releases elec-
trons that can be the dominant source of heating for interstellar
gas (Wolfire et al. 2003; Glover & Mac Low 2011). Dust grains
also transfer the radiation pressure from starlight to the gas and
couple it to the interstellar magnetic field through collisions (see,
e.g. Draine 2003 for a review; or Reissl et al. 2018, 2023 for a
microphysical model). Thus, reconstructing the distribution of
the dust is crucial for understanding the physical conditions of
the ISM.

Existing attempts to reconstruct the 3D distribution of dust
on galactic scales often take into account distance information
from stars in combination with individual extinction measure-
ments (or the combination of Gaia with auxiliary data; see e.g.
Lallement et al. 2018, 2019, 2022; Leike et al. 2020, 2022; or
Zhang et al. 2023). A similar approach has also been adopted for
assessing the 3D structure of individual molecular clouds (e.g.
Rezaei Kh. et al. 2017, 2020; Zucker et al. 2021; Rezaei Kh. &
Kainulainen 2022) or for building a realistic model of the matter
distribution in the solar neighbourhood (e.g. Zucker et al. 2022,
2023). On the smaller scales of individual star-forming clumps,
there have also been forward-modeling approaches introduced
for the 3D dust distribution based on the combination with
line data (see, e.g. Liseau et al. 2015) or from multi-frequency
dust emission data by fitting overlapping Gaussian ellipsoids
(Steinacker et al. 2005). Previous attempts to use machine learn-
ing to invert the radiative transfer problem have also been
reported (e.g. Garcia-Cuesta et al. 2009).

In this study, we introduce a novel deep learning approach
for the 3D reconstruction task, which employs a conditional
invertible neural network (Ardizzone et al. 2019a,b). The latter
belongs to the group of methods based on normalising flows
(e.g. Kobyzev et al. 2021) and has the advantage of giving access
to the full posterior distribution function. For this reason, the
cINN architecture is particularly well suited for solving degen-
erate inverse problems and has been successfully applied to a
range of subjects in astronomy. These include: the characteri-
sation of stellar properties from photometry (Ksoll et al. 2020)
or spectra (Kang et al. 2023b), prediction of exoplanet proper-
ties (Haldemann et al. 2023), analysis of emission lines in HII
regions (Kang et al. 2022, 2023a), cosmic ray origin studies
(Bister et al. 2022), and the reconstruction of galaxy assembly

histories from numerical simulations (Eisert et al. 2023). Due
to the lack of an observational ground truth sample, we have
trained the cINN with data taken from numerical models of
the turbulent multi-phase ISM, based on the Cloud Factory
suite of simulations introduced by Smith et al. (2020), which
we post-processed using detailed radiative transfer calculations
(employing POLARIS, see Reissl et al. 2016, 2019) to bring them
closer to the observational domain.

This paper is structured as follows. In Sect. 2, we outline the
construction of the training data for our method from synthetic
dust cloud simulations, including our setup for radiative transfer.
Section 3 provides a summary of the invertible neural network
approach, specifications of the inverse problem, implementation
details, and our analysis methods. In Sect. 4, we present the
evaluation of our trained models on synthetic test data and dis-
cuss the predictive performance of our approach. Lastly, Sect. 5
summarises our main results.

2. Training data

The main goal of this study is to reconstruct 3D dust distribu-
tions from the observed dust emission for sites of star formation
on the scale of individual cloud cores. As we want to tackle
this task with a supervised deep-learning approach, we there-
fore require a training data set consisting of 3D dust distributions
with their properties and corresponding dust emission observa-
tions. As such a data set does not yet exist for real observations,
we have turned to simulations to build a suitable database for
training.

2.1. Simulation data

As a basis for our training data set we chose the AREPO-based
(an adaptive Voronoi mesh hydrosolver, see Springel 2010),
galactic-scale ISM hydrodynamics simulation suite Cloud Fac-
tory, introduced by Smith et al. (2020) and Izquierdo et al.
(2021). The Cloud Factory self-consistently follows the for-
mation of dense gas and molecular hydrogen with an average
molecular weight of µg = 2.4 in a Milky Way-like galactic gas
disc at radii 4 kpc < r < 12 kpc, including the effects of galactic
scale forces, gas chemistry and cooling, and supernova feedback.
The time-dependent chemical evolution is modelled as in Smith
et al. (2014) using the hydrogen chemistry of Glover & Mac Low
(2007) and the simplified CO treatment of Nelson & Langer
(1997). It includes gas self-shielding from a UV field equivalent
to that seen in the solar neighbourhood and cosmic-ray ionisation
at the local rate as well.

The Cloud Factory employs a series of nested zooms with a
base mass resolution of 1000 M⊙ smoothly increased to 10 M⊙
within a co-rotating box of size 3 kpc. In the co-rotating box
individual cloud complexes are then selected and their resolu-
tion further increased to 0.25 M⊙, which is equivalent to a spatial
resolution better than 0.1 pc in gas with number densities higher
than 109 m−3. By including the galactic scale forces that form
the clouds, the Cloud Factory suite reproduces the turbulent gas
motions on multiple scales as observed in the ISM. However,
the current version of the suite does not include magnetic fields
or other forms of stellar feedback, such as stellar winds, jets, or
photoionisation.

For our analysis, we used Complex C and D, as shown in
Fig. 5 of Smith et al. (2020), and only included gas at the
highest resolution (0.25 M⊙ or four cells per local jeans length,
whichever is higher). These molecular cloud complexes were
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formed in regions that had previously experienced supernova
feedback and, therefore, they already contained a well developed
turbulent energy cascade. They are filamentary in structure, and
extend for more than 100 pc along their longest axis. The density
probability density function of the entire cloud complex peaks at
number densities of around 108 m−3, but extends beyond number
densities of 1010 m−3, which marks the point when sink particles
may form (see Tress et al. 2020). Sink particles represent regions
of star formation and at this resolution, they correspond to sin-
gle star systems that may actually be multiples. While sinks may
form above densities of 1010 m−3, they will only be created if the
gas passes energy checks to ensure it is bound and converging, so
in practice the simulations include densities up to 1010–1012 m−3.
Similarly, neighbouring gas cells can have material accreted by
the sinks, but only when the gas becomes bound to the sink.

A high spatial resolution allows us to select the compact
cloud cores on the scale of individual star-forming clumps that
we want to analyse in this study. As a starting point, we extracted
compact pre-stellar cloud cores (i.e. dense, cloud-like structures
that have not formed a sink and are smaller than 0.2 pc) for
this purpose from the Cloud Factory. However, we did not just
want to model these early phases of star formation, but also
more evolved star forming regions, particularly those affected
by nearby stars. As the star formation prescription in the Cloud
Factory forms sink particles on cluster scales (rather than indi-
vidual stars), we chose to modify the raw simulation data in a
post processing step by manually adding a star to model the
types of evolved star-forming regions that we want to consider
in this study. We guided these modifications on the example of a
well-observed real-world counterpart of this type of star-forming
cores, such as the nearby (d = 120 pc, Loinard et al. 2008), com-
pact (0.1 pc), star-forming core ρ Oph A (Loren et al. 1990) in
the Ophiuchus star-forming region.

We began our training set construction by cutting out cubes
centered on high-density, core-like gas aggregations from the
Cloud Factory in the complexes C and D, so that each cube
contains a mass between 5 to 40 M⊙ and a substructure with a
gas number density of at least 1010 to 1011 m−3 (i.e. the lower
density end of low-mass star-forming regions). In practise, the
candidate positions for these cubes are determined by applying a
density threshold to column density maps generated for three dif-
ferent (perpendicular) viewing angles of the complexes. We note
that beyond these criteria, the cubes were randomly selected and
do not represent any specific real-world counterpart star-forming
core. For simplicity, we matched the Cloud Factory data to a
regular grid. Initially, these cubes are selected on a 64 × 64 ×
64 pixel resolution, corresponding to a physical cube size of
0.4 pc. In total, we prepared a sample set of 11 036 individual
cubes from The Cloud Factory in this first step. The initial large
cube size serves primarily to avoid edge artefacts that can occur
in the radiative transfer simulation when synthesising the dust
temperature in post-processing for the later synthetic dust emis-
sion observations. For the final training data, we actually cropped
out the inner 32 × 32 × 32 pixel cubes, corresponding to a total
0.2 pc edge length. This resolution and size were chosen to keep
the problem simple for this proof-of-concept and to reduce the
overall training data size to facilitate the data handling during
the training phase of our approach.

2.2. Synthetic images

To produce synthetic dust emission observations from the
selected cloud model cubes, we employed the Monte Carlo

(MC) radiative transfer (RT) code POLARIS1 (Reissl et al.
2016, 2019). POLARIS calculates a dust temperature based on
a given 3D density distribution and a specific dust composi-
tion, assuming an instantaneous temperature correction and a
thermal equilibrium between the dust and its surroundings (for
details we refer to Lucy 1999 and Bjorkman & Wood 2001). For
the subsequent RT dust heating and emission simulations, we
assumed a dust mass to gas mass ratio of δgd = 1% and a mate-
rial composition of 37.5% graphite and 62.5% (astro)silicate
for the grains typical for the ISM. The applied grain sizes
are a ∈ [5 nm, 250 nm] and the number of grains, N, follows
a power-law N(a) ∝ a−3.5 (see e.g. Mathis 1977; Li & Draine
2001, for further details). We emphasise that the selected dust
parameters in combination with the average molecular weight
of the gas, µg, define an exact conversion factor from gas to
dust density. Because of this, we use the gas density as a
measure of the dust density in the following, without explic-
itly performing the conversion to remain consistent with the
Cloud Factory.

We began by preparing the models for two distinct RT setups.
In the first one, we considered the dust clouds to be only sub-
ject to the diffuse interstellar radiation field (ISRF). Here, we
used the parameterisation of Mathis et al. (1983) for the spec-
tral energy distribution with an intensity of G0 = 3, which is
typical for star-forming cores (Liseau et al. 2015). In the second
scenario, we also added a single star inside the cube in addition
to the background ISRF. We used the parameters of a typical
B4-type star (R = 4.33 R⊙, Teff = 16 000 K) in our MC dust heat-
ing simulation. We note that the dust MC heating by POLARIS
in this step does not modify the ionisation state of the gas or
redistribute the gas by means of radiatiave feedback. In each
individual cube, we simply placed the B4-analogue star inside
the inner 32 × 32 × 32 pixels, selecting a point of low gas den-
sity. This procedure roughly emulates the fact that the feedback
of such a star would likely clear out its immediate surroundings.

We generated synthetic, monochromatic dust emission obser-
vations with a 32 × 32 pixel resolution (matching the resolution
of the underlying dust distribution) at 23 wavelengths between
12 and 1300µm, matching the central wavelengths of bands
available at various observational facilities (see Table A.1 for
a full list). We note that we only generate synthetic observa-
tions for one viewing angle for each cube. In principle, it would
be possible to include multiple viewing angles to increase the
size of the training dataset, but given that our simulation suite
provides a sufficiently large dataset for training from different
physical regions, this is not necessary here. Nevertheless, after
training, we also conducted a performance test of our algo-
rithm on an individual region observed from different viewing
angles (Appendix B.1), which confirms that the reconstructed
3D structure is nearly identical.

The choice for monochromatic emission observations is
again made for simplicity, as modelling the full instrument
responses of the considered bands is quite complex and beyond
the scope of this proof of concept. Nevertheless, we wanted
to select wavelengths that are actually accessible with current
observational facilities; thus, we employed the corresponding
central wavelengths. Henceforth, we refer to the different wave-
lengths by the names of the respective instrument bands in the
following. We note that we did not consider wavelengths shorter
than 12µm because the influence of scattered light becomes

1 POLARIS website: https://portia.astrophysik.uni-kiel.
de/polaris/
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non-negligible in this regime, adding extra complexity. At the
current stage of our development, we have not considered instru-
mental effects related to the point spread functions (PSFs) of
the various telescopes or observational noise. Thus, we treat our
synthetic observations as fully resolved at all wavelengths and
uncertainty free. Properly modelling these effects is not trivial
either, particularly with respect to interferometric observations
with ALMA, where simulations with a dedicated processing
tool such as CASA2 (CASATeam et al. 2022) would be nec-
essary. Thus, we reserve a proper treatment of these effects for
a follow-up work. Still, we want to note that accounting for
uncertainties is well within the capabilities of the invertible neu-
ral network architecture used in this work, as demonstrated by
Kang et al. (2023a).

We initially generated our synthetic dust emission observa-
tions assuming a distance of 3.703 × 1018 m (120 pc). To build
a more generally applicable approach, we then rescaled the
synthetic fluxes following:

f̂ = f ×
d2

d2
ref

, (1)

where d denotes the actual distance and dref is the reference
distance (which the flux is scaled to) to determine a distance
independent absolute flux measure. The choice of dref is arbi-
trary and since we operate on the logarithm of the fluxes in the
following (see Sect. 3.3.1) only represents a linear offset to all
fluxes, which will not notably affect the training outcome of our
neural network approach. For simplicity, we set dref = 1 m, so
that the offset is zero in logarithmic space.

Having a complement of observations at 23 different wave-
lengths for a single real cloud core is typically unrealistic. Given
the complexity of the 3D reconstruction task, we started out
with this unrealistically large wavelength coverage to emulate a
perfect information scenario and determined the best predictive
performance our approach could achieve for this proof of con-
cept. In addition, we also investigated a second, more realistically
limited scenario, where we considered synthetic observations at
the central wavelengths of the following bands: WISE 22 µm,
SOFIA 89 µm and 154 µm, Herschel PACS 100 µm and
160 µm, Herschel SPIRE 350 µm, and LABOCA 870µm (see
Table A.1). This particular combination of bands is inspired
by real observational data, which is, for instance, available for
the ρ Oph A star forming cloud (Liseau et al. 2015; Santos
et al. 2019). We emphasise here that this particular wavelength
selection does not necessarily preserve the most information for
the given inverse problem and that there may be a much more
optimal subset of seven wavelengths among our total of 23 to
maximise the reconstructive performance of the approach out-
lined below. Determining this combination is beyond the scope
of this proof of concept and we reserve this to a dedicated
follow-up study.

3. Reconstruction approach

To solve the inverse problem of recovering the 3D dust temper-
ature and dust density distribution from the observed dust emis-
sion maps, we employed a supervised deep learning approach
called an invertible neural network (INN). In the following, we
provide a short summary of this methodology and outline our
specific setup for the 3D dust reconstruction task.
2 CASA website: https://casa.nrao.edu/

3.1. The conditional invertible neural network

The INN (Ardizzone et al. 2019a) belongs to the greater family of
normalising flows (NFs, Tabak & Vanden-Eijnden 2010; Tabak
& Turner 2013; Dinh et al. 2015; Rezende & Mohamed 2015;
Kobyzev et al. 2021). More specifically, these are deep learning
approaches that model complex distributions through sequences
of invertible transformations of simpler known probability distri-
butions (see also Kobyzev et al. 2021, for a review). Among the
NF methods, the INN stands as a neural network (NN) architec-
ture that is particularly well suited for solving degenerate inverse
problems. Introducing a set of latent variables z to encode the
information loss in the forward mapping x→ y from the physical
parameters x to a set of observables y, which renders the inverse
problem y → x degenerate, the INN can estimate full poste-
rior distributions p(x|y) for the target parameters. This allows
this method to both highlight and in some cases even break
degeneracies in solving the inverse problem.

In this study, we employ an INN architecture called condi-
tional invertible neural network (cINN, Ardizzone et al. 2019b).
During training, this method learns a mapping of the physi-
cal parameters x to the latent variables z, conditioned on the
observables y, that is the forward mapping denoted as:

z = f (x; c = y). (2)

In doing so, the cINN encodes all variance of the physical param-
eters that is not explained by the corresponding observables in
the latent variables, while the training process explicitly main-
tains a prescribed prior distribution P(z) for the latent variables.
At prediction time, the cINN can then query this encoded vari-
ance by drawing samples from the known prior distribution P(z)
of the latent variables and once it has been conditioned on a
new query observation y′, it can make use of its fully invertible
architecture to generate corresponding samples of the posterior
distribution p(x|y′) following:

p(x|y′) ∼ g(z; c = y′) with z ∝ P(z), (3)

where g(·; c) = f −1(·; c) denotes the inverse of the forward map-
ping, f , for fixed condition, c. For simplicity, P(z) is usually
prescribed to be a multivariate normal distribution with zero
mean and unit covariance. The dimension of the latent space
dim(z) is per construction equal to the dimension of the target
parameter space dim(x). On the other hand, as the observations
are treated as a condition their dimension can become arbitrarily
large. In fact, the architecture of the cINN allows for the intro-
duction of a feature extraction network, trained in tandem with
the cINN itself, to transform the input observations into a more
useful (learned) representation (Ardizzone et al. 2019b).

The invertibility of the cINN is achieved by employing so
called conditional affine coupling blocks (Dinh et al. 2017;
Ardizzone et al. 2019b). After splitting their input vector u
into two halves u1 and u2, these coupling blocks perform two
complementary affine transformations:

v1 = u1 ⊙ exp (s2(u2, c)) ⊕ t2(u2, c),
v2 = u2 ⊙ exp (s1(v1, c)) ⊕ t1(v1, c),

(4)

to compute the halves, v1 and v2, of the output vector, v,
where ⊙ and ⊕ denote elementwise multiplication and addition,
respectively. Here, si and ti represent arbitrarily complex trans-
formations of the concatenation of ui/vi and the conditioning
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input c. To run the network in reverse, Eq. (4) is then trivially
inverted given the output vector v = (v1, v2) following:

u2 = (v2 ⊖ t1(v1, c)) ⊙ exp (−s1(v1, c)) ,
u1 = (v1 ⊖ t2(u2, c)) ⊙ exp (−s2(u2, c)) ,

(5)

where ⊖ denotes elementwise subtraction. As the transforma-
tions si and ti are always evaluated in the same direction in both
the forward, Eq. (4) and backward pass, Eq. (5), of the coupling
block, it is not necessary to choose them to be invertible them-
selves. In fact, si and ti do not even need to be prescribed, but can
be learned instead during the training of the cINN by represent-
ing them with small sub-networks; for instance, a fully connected
neural network (Ardizzone et al. 2019a,b). The specific setup of
the cINN and the coupling block architecture used in this work
is described in Sect. 3.3.

3.2. Single LoS reformulation

The full inverse problem of the 3D reconstruction task consists
of predicting the 2 × N × N × N hypercube X of dust densities
and temperatures from the K × N × N cube, Y, containing the
corresponding observed dust emission in the K different wave-
lengths. Evidently, even for the small resolution of N = 32 that
we selected, this is a very high-dimensional problem. To simplify
our approach and mitigate the difficulties of high dimensional-
ity, we therefore decided to reformulate the inverse problem. In
particular, we reduced the 3D reconstruction problem to a matter
of individual LoSs under the main assumption that the emission
measured in any given pixel is independent of its neighbouring
pixels. This independence assumption is especially valid for the
perfectly resolved observation scenario that we consider here,
but it should also hold (at least to first order) for real obser-
vations unless the PSF of the instrument is significantly larger
than the pixel size, where smearing could become an issue. With
that, we aim to use the vector of the K measured emission fluxes
(eλ1 , . . . , eλK ) of a given pixel to recover the corresponding dust
density (n1, . . . , nN) and temperature (Tdust,1, . . . ,Tdust,N) vectors.
To avoid having to train two networks, we further combined the
line-of-sight (LoS) dust densities and temperatures into a single
vector, formulating the inverse problem as:

RK → R2N

(eλ1 , . . . , eλK )→ (n1, . . . , nN ,Tdust,1, . . . ,Tdust,N),
(6)

for a given LoS.
Within the cINN framework, the LoS emission vectors,

y = (eλ1 , . . . , eλK ), correspond to the conditioning input and
the combined vector of dust densities and temperatures, while
x = (n1, . . . , nN ,Tdust,1, . . . ,Tdust,N) denotes the target parame-
ters. Consequently, the latent space introduced by the cINN has
a dimension equal to that of x, that is: 2N.

At prediction time, a given query K×N ×N cube of emission
maps is first decomposed into the N2 line of sight emission vec-
tors of length K. For each of these LoSs i (with i ∈ {1, . . . ,N2}),
the corresponding emission vector, yi, is then processed by the
trained cINN, generating S samples of the full 2N-dimensional
joint posterior distribution p(xi|yi) by sampling the latent space
according to the known Gaussian prior distribution P(z). After-
wards, we reassemble these N2 LoS prediction results of size
2N × S into the 2 × N × N × N × S hypercube, Xsamp, of the
density and temperature posterior samples.

It is worth noting that with this LoS decomposition approach,
our method is not limited to the 32 × 32 pixel resolution in the

plane of sky, so that larger dust emission maps can be processed
as long as they match the physical resolution of 6.25 × 10−3 pc
per pixel of the training data. With regard to depth, however, the
presented approach is always limited to the 32 pixel depth corre-
sponding to a physical size of 0.2 pc that the cINN is trained
on. A possible avenue to create a more depth flexible exten-
sion of the method presented here could be to train the cINN on
data with varying per pixel resolution and providing the physi-
cal resolution as an additional conditioning input. Because this
would require a substantially larger training data set and notably
increases the complexity of the inverse problem (perhaps even
beyond the point of feasibility), we reserve this experiment to
our follow-up studies and focus on the fixed depth scenario here.
In any case, with the presented approach it is always possible
to tailor the training data towards the characteristic sizes of the
objects that are to be analysed and train a correspondingly spe-
cialised model, as we have done here for the example of very
compact, star-forming cores.

Final training data set

Following the prescription of the reformulated inverse problem,
we decomposed the 2 × 11 036 training cubes into their respec-
tive LoSs, netting a total of 2 × 11036 × 32 × 32 = 22 601 728
vectors. Figure A.1 shows the corresponding effective prior dis-
tributions prescribed by the training data for dust density and
temperature across all pixels of these lines of sights, as well
as a correlation diagram indicating the coverage in the density-
temperature space. In particular, we have covered a total density
range from 3.3× 106 to 2.2× 1013 m−3, although most of the data
is concentrated between 108 and 1012 m−3. The effective prior
distribution for dust temperature ranges from 6.3 to 240 K, but
is fairly skewed towards the 13 to 24 K interval, so that there
are comparatively a lot fewer training pixels above a temperature
of 32 K. This is a direct consequence of the fact that such high
dust temperatures only occur in the relatively few pixels in the
vicinity of a star. Given that half of our training cubes do not
contain a star, the per-pixel dust temperature prior distribution
is naturally biased towards this intermediate dust temperature
regime because there are simply much more pixels that are either
only subject to the ISRF to begin with or far enough away from
the star to avoid being heated to very high temperatures. A cor-
responding diagram of the prior distributions of the measured
fluxes at the 23 considered wavelengths across all pixels is pro-
vided in Fig. A.2. We emphasise that as a data-driven approach,
the cINN is mostly limited to the parameter space covered by
the training data. Although the cINN does exhibit some capabil-
ity for extrapolation beyond the limits of the learned parameter
space, there is in general no guarantee for a (physically) sound
prediction outcome for inputs and targets that fall outside the
described ranges.

We further split this data set randomly into a training (80%
of the data) and test set (20% of the data). The latter serves as
held-out data that is not seen during training of the cINN to later
evaluate the convergence and performance of the model. While
the split is in general randomly chosen, we make sure that the
held-out test set contains a subset of 100 complete cubes. For
this subset, we selected the same 50 cubes twice: once subject
solely to the ISRF and once in the ISRF + star configuration. The
aim is to evaluate how much the radiation setup affects the pre-
diction outcome for the dust density and temperature. While we
verified the model convergence on the greater test data set, the
reported performance and all diagrams presented in Sect. 4 are
based on this subset of 100 coherent cubes. Although this set of
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100 × 32 × 32 = 102 400 LoSs only represents 0.5% of the total
data, it has been selected as a representative subset of the test
data set in order to keep the memory requirements at a manage-
able level. For instance, storing the predicted posterior samples
for these 100 cubes as an uncompressed csv table following
the setup outlined further below already requires ∼ 360 GB of
memory.

3.3. Implementation details

We employed the Python deep learning module PYTORCH
(Paszke et al. 2017) and the dedicated Framework for Easily
Invertible Architectures (FrEIA3, Ardizzone et al. 2019a,b) pack-
age to implement the cINN approach. For the affine coupling
blocks, we employed the Generative Flow (GLOW; Kingma &
Dhariwal 2018) configuration, in which the transformations s1, t1
and s2, t2 were jointly estimated by one sub-network each, which
reduces the number of sub-networks in each coupling block from
four to two. As sub-networks we utilised simple, fully connected
networks with three layers of size 1024 and the rectified linear
unit (ReLU) activation function. As in Ardizzone et al. (2019b),
we also introduced a clamping procedure in the affine transfor-
mations in Eqs. (4) and (5) to the argument, s, of the exponential
functions of the form:

sclamp =
2α
π

arctan
( s
α

)
, (7)

with α = 1.9. This procedure avoids instabilities arising from
exploding magnitudes of exp(s). Furthermore, we alternated the
affine coupling layers with random permutation layers, which
randomly (but in a fixed and thus invertible manner) permute
the output vector between each coupling layer to better inter-
mix the information between the two streams u1 and u2. Our
final network architecture (as determined via hyperparameter
optimisation) is made up of nine coupling blocks in total. We
also employed a simple feature extraction network, consisting
of a three-layer (with 512, 512, and 256 nodes, respectively)
fully connected network with ReLU activation functions, trained
jointly with the cINN, to process the input observations.

3.3.1. Additional data preprocessing

Prior to training, we converted both the dust density and temper-
ature to logarithmic space. This serves to prevent issues during
training that can occur when the target parameters have a large
dynamic range. This is particularly notable in the case of the
dust density, which covers almost seven orders of magnitude.
In addition, this implicitly ensures that the predicted dust den-
sities and temperatures are always strictly positive. Afterwards,
we performed two linear scaling operations on the training data.
Each element xi of the target parameters, x, was rescaled by sub-
traction of its mean (over the entire training set) and then by
division by its standard deviation, so that the resulting distribu-
tion of the rescaled x̂i has zero mean and unit standard deviation.
For the observables, we applied a matrix whitening procedure
(Hyvärinen & Oja 2000) to the M × K matrix of training obser-
vations, Y, where M is the number of training examples and K is
the dimension of a single observation, y, such that the rescaled
observable matrix, Ŷ, has a unit covariance matrix. Given they
are linear transformations, these scaling operations are easily
inverted to convert the cINN output back to the true target param-
eter space. The coefficients of these scaling operations were
3 Available at https://github.com/vislearn/FrEIA

determined on the training data and at the prediction time applied
in the same fashion to the new query input.

3.3.2. Training setup and sampling strategy

We trained our cINN approach via minimisation of the maxi-
mum likelihood loss,L, as described in Ardizzone et al. (2019b),
namely:

L = Ei

 || f (xi; ci,Θ)||22
2

− Ji

 , (8)

where Ji = det(∂ f /∂x|x=xi ) denotes the determinant of the
Jacobian matrix evaluated at training instance xi and Θ rep-
resents the network weights. During training, the network
weights, Θ, that minimise the loss function, L, are deter-
mined using a standard stochastic gradient descent approach.
This means that after making an initial random guess
for the weights, they are iteratively updated in the direc-
tion of the gradient ∇ΘL based on randomly drawn sub-
sets (batches) of the training data until a convergence is
reached. In particular, we employ the adaptive learning
rate, momentum-based Adam (adaptive moment, Kingma &
Dhariwal 2018) optimiser for this purpose (with β1 = β2 = 0.8).
Here, we start with an initial learning rate (for Adam this is a
scaling factor for the adaptive step size in the weight updates
along the loss gradient) of linit = 9.642 × 10−5 and then we
reduced it by a factor of γ = 0.831 every 11 epochs. In total, our
models were trained for 250 epochs, using a batch size of 512
and processing 4096 batches per epoch. We also employed an
L2 weight regularisation with λ = 6.093 × 10−5. This setup was
determined via hyperparameter optimisation, using the Hyper-
band algorithm (Li et al. 2018), a procedure that combines a
random grid search approach with adaptive resource allocation
and an early stopping criterion. Hyperband provides an efficient
framework to test a large number of (randomly generated) hyper-
parameter configurations that finds a balance between running
the training in full only for configurations that appear promising
early (i.e. converge fast), while also allowing for some slower
converging models that might reach a better final result. For more
details on the logistics of Hyperband we refer to Li et al. (2018).
Training a single network with the final setup described above
takes about 19 h using GPU acceleration on a NVIDIA RTX
2080Ti graphics card.

At the prediction time, we then generated S = 4096 posterior
samples for each new query LoS. This number of samples is cho-
sen as a compromise between storage requirements and sample
density, although experiments with even larger sample numbers
have actually not shown a notable difference in the predicted
posterior distributions, so this did not seem necessary within
the framework of our analysis. A trained cINN can generate this
amount of samples for 1024 LoSs (that is a single cube) in about
28 s (on a NVIDIA RTX 2080Ti), making the inference of the
posterior distributions of the dust properties very efficient.

3.4. Making point estimates

To better compare the cINN predictions to the ground truth
hypercubes, X, in our synthetic test set, we computed a point
estimate X̂ from the hypercube of posterior distribution samples,
Xsamp, returned by the cINN. The most straightforward approach
for this is to derive the maximum a posteriori (MAP) predic-
tion values for the dust density and temperature in every pixel
of the 3D cube, which consists of determining the most likely
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value of the target parameters from the corresponding posterior
distribution. In the following, we describe how we tested two
methods for computing the MAP estimate given the predicted
posterior distribution from the cINN.

In the first approach, we treated the posterior distributions for
density and temperature of each pixel individually, marginalising
over all other pixels along the LoS, for which the cINN generated
samples of the joint posterior distribution. From the correspond-
ing set of posterior samples for each pixel, we identified the
MAP estimate for density and temperature by employing a kernel
density estimate (KDE) to first explicitly derive the probability
density curve of the posterior and then find the peak of this curve.
In practise, we used a Gaussian kernel function, determining the
kernel bandwidth automatically with Silverman’s rule of thumb
(Silverman 1986) and evaluating it on an evenly spaced grid of
1024 points (between the minimum and maximum value of the
posterior samples) to determine the MAP point estimates.

The cINN does not actually generate samples from the pos-
terior distributions of dust density and temperature of each
individual pixel but, rather, from the full joint posterior for den-
sity and temperature for all pixels along a given LoS. Therefore,
to be completely correct, the MAP has to be determined as the
most probable combination of values in the full 64-dimensional
space that the cINN constructs the posterior samples in. To
find the maximum of the probability density in this very high-
dimensional space and then compare it to the marginalised MAP
estimate, we employed the MeanShift algorithm (Fukunaga &
Hostetler 1975; Comaniciu & Meer 2002). It is a gradient ascent
approach whereby, given a set of N samples, the modes of the
underlying density distribution can be found. MeanShift is an
iterative procedure, in which the center of a kernel window is
continuously moved into the direction of the maximum increase
in density until convergence is reached. Given a kernel function
K(x) (e.g. a Gaussian kernel) and an initial position for the cen-
ter x of the kernel window, the algorithm computes the so-called
mean shift:

m(x) =
∑N

i=1 K (x − xi) xi∑N
i=1 K (x − xi)

− x, (9)

which is the difference between the kernel weighted mean and
the center of the kernel window. As demonstrated by Comaniciu
& Meer (2002), this vector is proportional to the estimate of the
density gradient estimate obtained with the same kernel; thus,
it always points in the direction of maximum increase in den-
sity. Iteratively translating the kernel window in direction of the
mean shift will therefore find a (local) maximum for the under-
lying density distribution (Comaniciu & Meer 2002). To find all
modes of the distribution (and ideally the global maximum) this
approach is then repeated for other initial kernel positions, scor-
ing the identified peaks by their corresponding (kernel) density
estimate. In a post-processing step, any spurious mode detections
(such as plateaus in the distribution) or very close-by modes
can then be further pruned (see for example Comaniciu & Meer
2002, for further details).

In practise, we employed the scikit-learn (Pedregosa et al.
2011) Python implementation of the MeanShift algorithm, which
uses a flat kernel:

K(x) =
{

1 if ||x||≤ λ
0 if ||x||> λ,

(10)

where λ denotes the bandwidth. To speed up computation, this
implementation provides a binned seeding strategy, where the
initial guesses for the kernel starting position are selected on a

discretised grid instead of testing all of the individual sample
points. The coarseness of this grid is determined by the band-
width selected for the kernel. The automatic bandwidth selection
that comes with this implementation (based on a nearest neigh-
bour distance estimation) has, however, proven not to be robust
enough for our very high-dimensional parameter space and
would often select bandwidths that are too small for the kernel
windows to find any data points inside of them (when used in
combination with the binned-seeding approach). Since the com-
putation time becomes prohibitively large without the binned
seeding, we adopted a simple bandwidth selection procedure
where we iteratively doubled an initial bandwidth guess of 32
until a bandwidth is found, with which the MeanShift algorithm
converges. In practise, this simple approach leads to the selection
of a bandwidth of 64 or 128 in most cases.

3.5. Spatial consistency

As we outline above, the cINN approach predicts the poste-
rior distributions for density and temperature for a single LoS
jointly. Consequently, the prediction preserves the consistency
of the predicted posteriors along the LoS. Perpendicular to the
LoS, however, we have (by construction) no such spatial consis-
tency guarantee. Figure 1 provides an example of this behaviour,
highlighting the gradual shift of the posteriors along the LoS,
whereas perpendicular to it, they are not necessarily consistent.
As a consequence, the MAP or MeanShift point estimates can
often exhibit sharp discontinuities in the predicted densities and
temperatures. This can be seen, for example, in the MAP esti-
mates in the left panels of Fig. 1. As these discontinuities and
sharp jumps are rather unphysical, we experimented with two
approaches in order to mitigate the spatial consistency issue.

3.5.1. MNPCP point estimator

Our first approach consists of introducing a third, alternative
point estimator that enforces a degree of spatial consistency
perpendicular to the LoSs, which we refer to as the median
neighbour pixel combined posterior (MNPCP) in the following.
Figure 2 outlines the steps of the MNPCP approach. Looping
over all pixels in the 3D cube of generated posterior samples,
Xsamp, we first collected the samples for the current pixel and
its 26 neighbouring pixels. We then determined the n and Tdust
point estimates for the current pixel as the weighted median of
this combined set of posterior samples. Here, each sample has
been weighted according to the distance of the pixel to the query
pixel using the city-block distance metric (Manhattan distance).
For edge cases, we accumulate only samples from the existing
neighbour pixels, meaning that no form of padding was applied.
Taking, for example, a corner pixel, this means that samples from
only the seven neighbour pixels are accumulated, as compared to
the 26 neighbours available for an interior pixel.

3.5.2. Neighbour LoS reformulation

Aside from introducing an alternative point estimator to com-
bat the spatial consistency issue, we also investigated whether a
different reformulation of the inverse problem may improve the
situation, in comparison to our primary formulation (introduced
in Sect. 3.2). We refer to cINNs trained on the primary refor-
mulation as a single LoS cINN (SLoS-cINN) in the following,
whereas models for the alternative formulation outlined below
shall be denoted as a neighbour LoS cINN (NLoS-cINN). To
directly compare the SLoS and NLoS approaches, we tested both
of them with all three introduced point estimators, namely: MAP,
MeanShift, and MNPCP.
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Fig. 1. Comparison of the predicted posterior distributions along vs. perpendicular to the LoS (into the plane). The left column shows an example
slice with the MAP estimates for dust density (top) and dust temperature (bottom). The other three columns show the posterior distributions of
dust density (top) and temperature (bottom) for the lines indicated in the left panels in black, blue and purple, respectively. Here, the black square
denotes a LoS going into the plane of the image, whereas the blue and purple lines are perpendicular to the LoS along the x and y axis, respectively.

The NLoS reformulation aims at improving the spatial con-
sistency perpendicular to the LoS by adding information of the
neighbouring LoSs to the observables. Instead of taking only the
vector of fluxes corresponding to the pixel of a given LoS, we
go on to also consider the observed dust emission in the eight
neighbouring pixels, so that the inverse problem becomes:

R9K → R2N

(y1, . . . , y9)→ (n1, . . . , nN ,Tdust,1, . . . ,Tdust,N),
(11)

where yi = (ei,λ1 , . . . , ei,λK ) denote the nine emission flux vec-
tors corresponding to the pixel (y5) and its neighbourhood. This
reformulation has one immediate drawback, however, in that we
lose some of the available training data. As we now require every
LoS to have eight neighbours, we can no longer consider the edge
cases in our training cubes, reducing the total amount of LoSs
available for training data to 2 × 11036 × 30 × 30 = 19 864 800.
Another disadvantage is a notably increased memory require-
ment when storing the training data as a simple csv-table, since
we increased the size of the observables vector by a factor of
9. In our case, the table size increases from 55 to 138 GB, even
though the latter set contains 2 736 928 fewer LoSs. Neverthe-
less, this is the most straightforward approach to providing the
cINN with information on the vicinity of a given query pixel.

3.6. Performance evaluation

To quantify the overall performance on the held-out test set of
100 coherent cubes, we computed two metrics for the three dif-
ferent point estimation approaches as an average over all Ntest =
100 × 32 × 32 × 32 = 3 276 800 test pixels. The first one is the
normalised root mean squared error (NRMSE), defined as:

NRMSE =
1
∆xTS

√√√
1

Ntest

Ntest∑
i=1

(
xi,pred − xi,true

)2
, (12)

where xi,true and xi,pred refer to the ground truth and point
estimate prediction of target parameter x for pixel i, and

∆xTS = max(xTS) −min(xTS) denotes the range of target param-
eter, x, in the training data (6.82 and 1.58 for log(n/m−3) and
log(Tdust/K), respectively). The second metric that we computed
is the median |ērel| (and 25% and 75% quantiles) of the absolute
relative error |ei,rel|, defined as:

|ei,rel|=

∣∣∣∣∣∣ xi,pred − xi,true

xi,true

∣∣∣∣∣∣ , (13)

for pixel i.

4. Results

In this section, we outline the evaluation results regarding the
predictive performance of our trained cINN models on the held-
out 100 test cubes. Table 1 provides a summary of the NRMSE
and absolute relative errors achieved by our three different cINN
setups with the three different point estimation approaches. In
addition, it also shows a breakdown of the results between the
two radiative transfer configurations, that is, ISRF-only and
ISRF + star. In the following, we first discuss the influence of the
point estimator choice on the prediction results on the example of
the SLoS-cINN that accounts for all 23 wavelengths (Sect. 4.1).
We then compare the outcomes of the NLoS approach to the
SLoS setup (Sect. 4.2) and present an analysis of the SLoS per-
formance for the more realistically limited wavelength coverage
experiment (Sect. 4.3). We conclude with a comparison of our
approach with a classical SED fit to determine column densities
(Sect. 4.4), followed by discussions on the physical feasibility of
the approach (Sect. 4.5) and on the application of our setup to
real observational data (Sect. 4.6).

4.1. Choice of the point estimator and influence of the
radiation configuration

Figure 3 shows a qualitative comparison of the point estimates
for dust density and temperature to the ground truth for the MAP,
MeanShift, and MNPCP estimators. In particular, we show the
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Fig. 2. Schematic outline of the median neighbour pixel combined posterior approach for point estimations based on the example of dust density.
The procedure follows the panels from top left to bottom left in clockwise order. The top-left panel shows the MAP density estimates for a single
slice of a dust cube (perpendicular to the LoS), highlighting the discontinuities that can occur in the MAP estimate. The query pixel, for which
the MNPCP estimate will be computed, and its neighbourhood are indicated in orange and purple, respectively. The top-right panel shows the
predicted posterior distributions for the dust density for the query pixel with index 7/11/8 (center subpanel indicated by the orange outline) and all
26 neighbouring pixels. The colours of the curves indicate the slice, i, that they come from, whereas the indices in the top right corner denote the
pixel index perpendicular to the LoS. The bottom-right panel shows a histogram of the all posterior samples accumulated from the query pixel and
its neighbours. Here, the orange dotted curve indicates the original (marginalised 1D) posterior distribution of the query pixel and the purple line
marks the MNPCP estimate, which is the city-block distance weighted median of all posterior samples (the distance in pixels when allowing only
right angle moves, no diagonals). Finally, the bottom-left panel presents the MNPCP dust density estimates of the slice shown in the top left with
the orange and purple boxes indicating again the query pixel and its neighbourhood.

outcome for a single slice (perpendicular to the LoS) of one
example cube of the test set. Here, the first four rows show the
prediction results based on the SLoS-cINN, distinguishing the
ISRF-only scenario (rows 1 and 2) and the ISRF + star radiation
configuration (rows 3 and 4). In the ISRF scenario, we can see
that all three point estimators provide a very decent reconstruc-
tion result for both dust density and temperature. However, the
discontinuities in the MAP prediction (as previously discussed
in Sect. 3) are quite notable and give the prediction outcome a
noisy character. The MeanShift result in the third column also
suffers from this effect, albeit to a slightly lesser degree. Given
that both of these estimators have no spatial consistency guaran-
tee perpendicular to the LoS, this is of course an expected result.
Contrary to that, we can see that our MNPCP approach (fourth
column) provides a much more consistent and smoothed predic-
tion result than the other two estimators. Nevertheless, this can
come at the expense of losing some of the finer, high-density

features of the dust distribution. A full comparison of the predic-
tion with the SLoS-cINN for all slices of this example cube in
the ISRF-only configuration is given in Fig. B.1. We also refer to
Fig. B.2 for a 3D visualisation of the prediction results in terms
of isodensity surfaces.

The predictions for the same cube with the alternative radi-
ation setup (rows 3 and 4, Fig. 3) indicate that the inclusion of
a star affects not only the prediction of the dust temperature (as
expected given the additional heating from the star), but the dust
density estimates as well. Although the overall reconstruction
of both dust density and temperature remain quite good in this
example, it is obvious that the reconstructed dust density has lost
accuracy in comparison to the cINN prediction for the same cube
subject to only the ISRF. While the overall larger scale structures
are still recovered well, a lot of the finer details of the dust dis-
tribution are lost compared to the prediction in the ISRF-only
scenario. The inclusion of a star inside of the cube thus appears
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Table 1. Summary of the predictive performance for our three different cINN setups and the three different point estimation methods.

cINN

Cube selection Point estimator Measure Parameter Single LoS Neighbour LoS Single LoS (7 wavelengths)

All cubes

MAP
NRMSE log(n/m−3) 0.0707 0.0608 0.0981

log(Tdust/K) 0.0300 0.0260 0.0458

|ērel| (%) log(n/m−3) 1.85+1.99
−1.07 1.52+1.62

−0.89 2.61+3.13
−1.50

log(Tdust/K) 0.87+1.39
−0.56 0.75+1.15

−0.48 1.47+2.49
−0.94

MeanShift
NRMSE log(n/m−3) 0.0640 0.0555 0.0855

log(Tdust/K) 0.0251 0.0221 0.0372

|ērel| (%) log(n/m−3) 2.01+1.87
−1.15 1.63+1.57

−0.93 3.10+2.52
−1.68

log(Tdust/K) 1.01+1.39
−0.64 0.84+1.19

−0.53 1.97+2.04
−1.14

MNPCP
NRMSE log(n/m−3) 0.0620 0.0536 0.0838

log(Tdust/K) 0.0245 0.0213 0.0359

|ērel| (%) log(n/m−3) 1.84+1.78
−1.05 1.54+1.48

−0.88 2.81+2.47
−1.54

log(Tdust/K) 0.96+1.26
−0.58 0.82+1.07

−0.49 1.72+1.89
−0.99

ISRF-only

MAP
NRMSE log(n/m−3) 0.0510 0.0441 0.0917

log(Tdust/K) 0.0633 0.0550 0.1135

|ērel| (%) log(n/m−3) 1.41+1.45
−0.83 1.18+1.20

−0.69 2.252.82
−1.29

log(Tdust/K) 0.61+1.03
−0.39 0.53+0.89

−0.34 1.33+2.54
−0.87

MeanShift
NRMSE log(n/m−3) 0.0480 0.0409 0.0804

log(Tdust/K) 0.0522 0.0455 0.0906

|ērel| (%) log(n/m−3) 1.53+1.42
−0.88 1.24+1.18

−0.72 2.86+2.40
−1.56

log(Tdust/K) 0.70+1.12
−0.45 0.58+0.95

−0.37 1.90+2.08
−1.12

MNPCP
NRMSE log(n/m−3) 0.0456 0.0395 0.0772

log(Tdust/K) 0.0506 0.0439 0.0859

|ērel| (%) log(n/m−3) 1.40+1.33
−0.80 1.19+1.12

−0.69 2.51+2.26
−1.38

log(Tdust/K) 0.70+1.02
−0.42 0.60+0.88

−0.36 1.64+1.93
−0.97

ISRF + star

MAP
NRMSE log(n/m−3) 0.0859 0.0739 0.1041

log(Tdust/K) 0.0387 0.0336 0.0538

|ērel| (%) log(n/m−3) 2.45+2.55
−1.38 1.99+2.05

−1.12 3.01+3.34
−1.71

log(Tdust/K) 1.20+1.67
−0.74 1.02+1.32

−0.62 1.61+2.43
−0.98

MeanShift
NRMSE log(n/m−3) 0.0767 0.0670 0.0903

log(Tdust/K) 0.0327 0.0289 0.0441

|ērel| (%) log(n/m−3) 2.66+2.19
−1.44 2.15+1.89

−1.18 3.35+2.61
−1.78

log(Tdust/K) 1.38+1.50
−0.80 1.14+1.29

−0.67 2.05+2.01
−1.15

MNPCP
NRMSE log(n/m−3) 0.0748 0.0648 0.0899

log(Tdust/K) 0.0320 0.0279 0.0431

|ērel| (%) log(n/m−3) 2.45+2.13
−1.34 1.99+1.80

−1.10 3.13+2.64
−1.69

log(Tdust/K) 1.27+1.39
−0.73 1.08+1.16

−0.61 1.79+1.85
−1.01

Notes. Listed are respectively the NRMSE and the median absolute relative error |ērel| (along with the 25% and 75% quantiles) for the dust density
and temperature evaluated across all pixels of the set of test cubes indicated in the first column.

to add not only complexity to the prediction of the dust temper-
ature, but also renders the recovery of the density more difficult.
For a complete comparison of all slices of the example cube in
the ISRF + star radiation configuration, we refer to Fig. B.4. The
corresponding 3D isodensity surface visualisation is provided
in Fig. B.5. To provide additional insights into the difference
between the predictions on the ISRF-only and ISRF+star cube,

Fig. B.3 presents an extension to Fig. 3, where some examples
of the predicted posterior distributions are shown. Here, we find
that the density posterior distributions become notably wider
in the RT scenario that includes the star, which results in flat,
plateau-like or even multi-peaked distributions for some pixels.
In the latter cases, the peaks of the distributions may then no
longer coincide with the ground truth (although the ground truth
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is always part of the distribution); for instance, the MAP estima-
tor returns a suboptimal result in comparison to the prediction for
the same cube in the ISRF-only scenario. There are two possible
explanations for the broadening of the density posterior distribu-
tions in the second RT scenario. The first is that this an intrinsic
degeneracy of the problem. While the cubes share the same den-
sity distribution between the two RT setups, the resulting dust
temperatures naturally differ. It is not unreasonable to believe
that recovering the density can become more or less ambigu-
ous depending on the temperature given that opacity depends on
temperature. It is also worth noting that the temperature posterior
distributions do not suffer the same broadening effect and appear
similarly well constrained in both RT configurations. The second
possible explanation is a suboptimal convergence of the network
related to the sampling of the training data, which is discussed
in more detail further below.

To quantify the overall performance of the SLoS-cINN in
combination with the three different point estimators, we present
a direct one-to-one comparison of the predicted dust densities
and temperatures to the respective ground truth values, and the
corresponding relative residuals for all 100 × 323 pixels in the
test set in Fig. 4. As indicated by Table 1 and Fig. 4, the overall
predictive performance of the SLoS-cINN in the 23-wavelength
configuration is quite excellent across all three point estimation
approaches. Here, we achieved NRMSEs between 0.06 to 0.07
in log(n/m−3) and between 0.025 to 0.03 in log(Tdust/K), cor-
responding to median absolute relative residuals, |ērel|, in the
ranges of 1.8 to 2.0% and 0.9 to 1.0%, respectively. Although
there is a notable dispersion around a perfect one-to-one cor-
relation between the estimated densities and temperatures and
the corresponding ground truth, the binned median curve (and
binned 25 and 75% quantile curves) in the relative residual dia-
grams indicates that a majority of pixels is indeed close to a
perfect recovery for most of the range covered in density and
temperature. Nevertheless, the relative residuals can reach up to
40 to 50% for a small number of individual pixels in terms of
both density and temperature.

The binned median relative residual curves also highlight
some systematic trends in the point estimation outcome. For the
dust density, we find a notable trend towards overestimation of
the density for pixels with a true density below log(n/m−3) = 8.
There is also a tendency (although to a lesser extent) for under-
estimations at the high density end, starting at log(n/m−3) = 11.
For the dust temperature, we also observe a systematic underesti-
mation at temperatures higher than 100 K, and for the MeanShift
and MNPCP point estimates a slight tendency for overestima-
tion below 10 K. It appears that the recovery of dust density and
temperature in terms of the point estimation tends to struggle
more overall towards the extreme ends of the respective param-
eter range. Part of this difficulty can likely be attributed to the
relative complexity of these more extreme environments, but
there might be a more direct issue with our training data that
could explain this decrease in the predictive performance at the
edges of the parameter space. Figure A.2 shows the prior dis-
tributions of dust density and temperature across all pixels in
our training set. Comparing the thresholds at which the binned
median relative error starts to show systematic offsets in Fig. 4,
that is, log(n/m−3) < 8, log(n/m−3) > 11 and log(Tdust/K) > 2,
to the training set priors, we can see that there are comparatively
a lot fewer pixels in these parameter ranges in the training data.
This (relative) lack of training examples within these parame-
ter ranges could lead to a suboptimal convergence of the cINN,
so that it does not achieve the same robustness at the edges

of the parameter space as it does within the intervals where
a lot of training data is available. Given that the prior distri-
butions of the dust densities and temperatures in our training
data are (in part) dictated by the underlying dust cloud simu-
lations, achieving a more even sampling across the parameter
spaces is not a trivial matter and at this stage, this is beyond
the scope of this proof of concept. It is also worth noting that
very high temperature regions (Tdust > 100 K) are both rare
in reality and likely affected by strong feedback, being either
part of an HII region or related to strong outflow activity. This
adds further complexity to these extreme environments, which
is also currently not accounted for in the Cloud Factory as
noted in Sect. 2. We plan to investigate these effects and the
sampling strategy further in future optimisation of our training
set generation.

In comparing the three point estimators more in detail,
we find that both MeanShift and MNPCP are less prone to
large outlier values, as evident by the smaller dispersion around
the one-to-one correlation in Fig. 4 and the lower NRMSE
in Table 1. At the same time, it is the MAP estimator that
returns the overall best |ērel| with 1.85% for log(n/m−3) and
0.87% for log(Tdust/K). Although the MNPCP estimator has a
nominally better result for |ērel| with 1.84% for log(n/m−3), it
incurs a notably larger error in log(Tdust/K) with 0.96%. The
latter small performance decrease of the MNPCP approach in
terms of |ērel| is likely a result of the effective smoothing that
this estimator performs. As Fig. 4 shows, this enhances the
underestimation tendencies at the high temperature end (also
for high density but to a lesser degree) and, thus, the average
error. For the MeanShift, which performs the worst in terms
of |ērel|, this might be a consequence of a suboptimally chosen
bandwidth from our simplified bandwidth selection procedure
(as described in Sect. 3). If, for instance, the selected band-
width is too large, the MeanShift kernel will overly smooth
the density distribution and likely miss narrow peaks. This
results in a comparable (over-) smoothing effect to the MNPCP,
as evidenced by the similar behaviour of the two methods in
Fig. 4.

Figure 5 provides a breakdown of Fig. 4 for the best and
worst case prediction outcomes, that is the five cubes with the
best and five cubes with the worst NRMSE in the MAP point
estimate. Averaged over the five best cubes |ērel| goes down to
about 1% and 0.5% in log(n/m−3) and log(Tdust/K), respectively.
In the worst cases on the other hand, |ērel| reaches up to 4.4%
and 1.7% in log(n/m−3) and log(Tdust/K), respectively. What is
interesting to note here is that the five best cubes are all only
subject to the ISRF, whereas the five worst ones are all in the
ISRF + star radiation configuration. This reaffirms our earlier
assessment that the presence of a star in the cube notably compli-
cates the problem. We further quantified this by breaking down
the overall performance on the test set between the two radiation
setups in Table 1. As we can see, |ērel| increases by almost a fac-
tor of two for the cubes with ISRF + star setup in comparison to
the ISRF-only configuration cubes regardless of the choice of the
point estimator. We also want to emphasise that the observed per-
formance is not dependent on the selected viewing angle of the
cubes. We have confirmed in a test limited to the 50 ISRF-only
cubes that the cINN returns a similarly excellent reconstructive
performance, when the cubes are observed from different direc-
tions. Thus, our choice to only generate synthetic observations
from one direction in the training data has not introduced a bias
in the form of a preferred viewing angle (for more details, see
Appendix B.1).
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Fig. 3. Predicted dust densities and temperatures for a single example cube slice perpendicular to the LoS. A comparison between the three point
estimation methods to the ground truth is shown in the left column. The top two rows give the 23-wavelength SLoS-cINN result for the ISRF-only
scenario, while rows 3 and 4 display the counterpart for the ISRF + star case. Rows 5 and 6 present the NLoS-based outcome for the ISRF-only
case, and the last two rows show the corresponding seven wavelengths SLoS-cINN prediction. The listed NRMSE and median absolute relative
errors are averages over this slice only and not the entire cube.

A246, page 12 of 38



Ksoll, V. F. et al.: A&A, 683, A246 (2024)

7

8

9

10

11

12

13

lo
g(

n/
m

3 )
pr

ed

RMSE = 0.4444
NRMSE = 0.0707

MAP

100 102 104
Counts

RMSE = 0.4022
NRMSE = 0.0640

MeanShift

100 101 102 103
Counts

RMSE = 0.3896
NRMSE = 0.0620

MNPCP

100 101 102 103
Counts

8 10 12
log(n/m 3)GT

30

20

10

0

10

20

30

40

50

Re
la

tiv
e 

Re
sid

ua
l (

%
)

erel = 0.33+2.19
1.63 %

100 102 104

Counts

IQR
ebin

rel

8 10 12
log(n/m 3)GT

erel = 0.16+2.07
1.93 %

100 102 104

Counts

IQR
ebin

rel

8 10 12
log(n/m 3)GT

erel = 0.04+1.97
1.75 %

100 102 104

Counts

IQR
ebin

rel

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

lo
g(

T d
us

t/K
) pr

ed

RMSE = 0.0467
NRMSE = 0.0300

100 102 104
Counts

RMSE = 0.0391
NRMSE = 0.0251

100 102 104
Counts

RMSE = 0.0381
NRMSE = 0.0245

100 102 104
Counts

1.0 1.5 2.0
log(Tdust/K)GT

40

20

0

20

40

Re
la

tiv
e 

Re
sid

ua
l (

%
)

erel = 0.00+0.86
0.88 %

100 102 104

Counts

IQR
ebin

rel

1.0 1.5 2.0
log(Tdust/K)GT

erel = 0.00+1.10
0.93 %

100 102 104

Counts

IQR
ebin

rel

1.0 1.5 2.0
log(Tdust/K)GT

erel = 0.01+1.05
0.88 %

100 102 104

Counts

IQR
ebin

rel

Fig. 4. Performance breakdown of the SLoS-cINN using 23 wavelengths. 2D histograms comparing the cINN predictions for dust density (top two
rows) and temperature (bottom two rows) to the ground truth across all pixels of the test set data are given, distinguishing the results of the three
point estimation procedures: MAP, MeanShift, and MNPCP. Rows 1 and 3 present the direct one-to-one correlation of the predicted parameters
to the ground truth, whereas rows 2 and 4 provide the corresponding relative residuals. In the latter panels, the black curve and grey shaded area
indicates a binned median relative residual along with the interquantile range between the 25% and 75% quantile of these bins.

In Sect. 3, we specifically introduce the MNPCP approach,
because the MAP and MeanShift estimators per construction of
our inverse problem do not have a spatial consistency guarantee
perpendicular to the LoS (as demonstrated in Fig. 3). To quan-
tify whether the MNPCP approach improves upon this situation
(beyond the qualitative comparison in Fig. 3), we computed the
median difference in density and temperature for neighbouring

pixels following:

∆∥LoS = median
{
xi+1, j,k − xi, j,k

} {∀i ∈ {1, . . . ,N − 1}
∀ j, k ∈ {1, . . . ,N}

(14)

and perpendicular to the LoS:

∆⊥LoS = median
{
∆ j,∆k

}
, (15)
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Fig. 5. Breakdown of the predictive performance of the SLoS-cINN for the best and worst cases. Analogously to Fig. 4, we show the 2D histograms
for the one-to-one comparison of the prediction results (rows one and three) and their respective residuals (rows 2 and 4). The left three columns
present the five best reconstructed cubes, whereas the five worst reconstructed ones are shown in the three right columns, respectively.

where

∆ j =
{
xi, j+1,k − xi, j,k

} {∀ j ∈ {1, . . . ,N − 1}
∀i, k ∈ {1, . . . ,N}

∆k =
{
xi, j,k+1 − xi, j,k

} {∀k ∈ {1, . . . ,N − 1}
∀i, j ∈ {1, . . . ,N},

for our three different point estimators. We then compared these
results to the respective values obtained from the ground truth.
The results of this analysis on the test set are summarised in
Table 2. As expected, there is no preferred direction in the
ground truth, with values of about 0.075 in log(n/m−3) and 0.01
in log(Tdust/K) for both ∆∥LoS and ∆⊥LoS. In the MAP and Mean-
Shift prediction results, on the other hand, we find ∆⊥LoS to
be about twice as large as ∆∥LoS on average, confirming again
the spatial consistency issue. In contrast, the MNPCP estima-
tor offers a much more balanced result, achieving about even
∆⊥LoS and ∆∥LoS for log(Tdust/K), and at least reducing ∆⊥LoS
to about 1.5∆∥LoS for log(n/m−3). Yet even with that outcome,
the MNPCP estimate does not quite achieve the balance of the
ground truth results. It is also interesting to note that all three
point estimators return solutions where ∆∥LoS is notably smaller
than in the ground truth. This indicates that the cINN predic-
tion tends to return a smoother transition along the LoS than the
ground truth. This is likely a result of the fact that the cINN
returns a smooth continuous output, whereas the ground truth is
limited by the coarseness of the simulation resolution.

In summary, we find an overall very satisfactory performance
of the SLoS-cINN in the 23-wavelength configuration, provid-
ing a fairly robust recovery of dust density and temperature for
most of the tested parameter range. We do note, however, a sys-
tematic decrease in performance towards the lower and upper
limits of the trained range in terms of density and tempera-
ture, which can potentially be traced back to a relative lack of
examples in these regimes in the training data. We also iden-
tified a dependence of the performance on the radiation setup
of the test cubes, where the ones also hosting a star in addition
to the ISRF appear more difficult to reconstruct. Regarding the
choice of the point estimator, there is no clear winner in terms
of the NRMSE and |ērel| performance indicators. Nevertheless,
we believe that the MNPCP approach appears as the most rea-
sonable solution because it can provide smooth reconstruction
solutions both along and perpendicular to the LoS. One caveat
to keep in mind is the fact that the MNPCP point estimator does
amplify the systematic error tendencies at the lower and upper
limits of the density and temperature ranges due to its inherent
smoothing effect.

4.2. Taking the neighbouring LoSs into account

Rows 5 and 6 of Fig. 3 provide the qualitative comparison
between the prediction outcomes of the three point estimation
approaches for the NLoS-cINN, which is the model trained for
the alternative formulation of the inverse problem described in
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Table 2. Overview of the median difference, ∆, in dust density and temperature between neighbouring pixels along and perpendicular to the LoS
for the three different point estimators and two inverse problem setups.

log(n/m−3) log(Tdust/K)

Inverse problem setup Measure ∆∥LoS ∆⊥LoS ∆∥LoS ∆⊥LoS

Ground Truth 0.075+0.086
−0.050 0.073+0.082

−0.048 0.010+0.010
−0.006 0.010+0.009

−0.006

Single LoS (23 wavelengths)
MAP 0.040+0.049

−0.024 0.106+0.099
−0.059 0.005+0.008

−0.003 0.011+0.012
−0.006

MeanShift 0.050+0.043
−0.029 0.098+0.084

−0.054 0.007+0.007
−0.004 0.011+0.010

−0.006

MNPCP 0.045+0.045
−0.027 0.064+0.055

−0.035 0.007+0.007
−0.004 0.008+0.008

−0.005

Single LoS (7 wavelengths)
MAP 0.032+0.037

−0.018 0.107+0.106
−0.060 0.003+0.006

−0.002 0.012+0.014
−0.007

MeanShift 0.041+0.036
−0.025 0.087+0.078

−0.048 0.006+0.007
−0.004 0.011+0.011

−0.006

MNPCP 0.038+0.041
−0.024 0.063+0.056

−0.035 0.006+0.007
−0.004 0.008+0.008

−0.005

Ground Truth 0.077+0.085
−0.051 0.077+0.083

−0.050 0.011+0.010
−0.006 0.010+0.009

−0.005

Neighbour LoS
MAP 0.045+0.055

−0.027 0.103+0.095
−0.057 0.006+0.008

−0.004 0.010+0.010
−0.006

MeanShift 0.056+0.048
−0.033 0.095+0.082

−0.052 0.008+0.008
−0.005 0.010+0.009

−0.005

MNPCP 0.051+0.049
−0.030 0.066+0.058

−0.037 0.008+0.008
−0.008 0.007+0.007

−0.004

Notes. The ground truth values differ slightly between the two setups, as the NLoS approach does not contain the edge LoSs of each cube.

Sect. 3.5. For direct compatibility the shown slice and example
cube are the same as for the SLoS-cINN outcomes in Fig. 3,
except that the 124 border pixels, which lack the required number
of neighbouring LoSs for the prediction with the NLoS-cINN,
are missing. At first glance the MAP and MeanShift results
appear less noisy, which is subject to fewer strong discontinu-
ities, with the NLoS-cINN in comparison to the SLoS-cINN
outcome (first two rows of Fig. 3). In addition, the NLoS-cINN
based reconstructions seem overall to be slightly more faithful to
the ground truth in terms of the recovered details.

Looking at the spatial discontinuities perpendicular to the
LoSs in the MAP and MeanShift estimates (see Table 2), it
appears that the NLoS-cINN suffers on average from the same
issue as the SLoS-based prediction results. ∆⊥LoS is still twice
as large as ∆∥LoS for both density and temperature. Again, only
the MNPCP approach achieves a more balanced result, but not
quite at the level of the ground truth. Thus, accounting for the
fluxes in the neighbouring LoSs does not appear to lead to a
significant improvement of the spatial consistency perpendicu-
lar to the LoS in the prediction of dust density and temperature.
It is worth noting, however, that this observation may only hold
in the fully resolved dust emission map scenario that we have
posed in this study, which renders neighbouring LoSs effectively
independent. In real observations, however, where the PSF of a
given instrument is larger than a single pixel, neighbouring pix-
els in the dust emission maps may become correlated. In the
latter case, it is possible that the NLoS-cINN may perform better
with regards to the spatial consistency. We will conduct a corre-
sponding test in our subsequent work, once we have established
a proper treatment of the instrument-related resolution effects
during training.

Looking at the overall performance of the NLoS-cINN in
comparison to the SLoS-cINN (see Table 1 and Fig. 6), we
do find a general improvement. In particular, the NRMSE goes
down to values as low as 0.054 and 0.0213 for log(n/m−3) and
log(Tdust/K) with the MNPCP estimator, compared to the SLoS-
cINN results of 0.062 and 0.0245. |ērel| with, for instance, the
MNPCP estimator improves to 1.54% and 0.82% opposed to

the SLoS-based performance of 1.84% and 0.96%, respectively.
It is possible that this performance improvement is only a data
selection effect, since the NLoS and SLoS test sets are not fully
identical, with the former missing the edge LoSs of every cube.
To test this hypothesis, we recomputed the SLoS-cINN perfor-
mance, limited to the LoSs of the NLoS test set. This experiment
reveals that the observed average performance improvement of
the NLoS-cINN is real, as the SLoS-cINN performs even slightly
worse on this limited test set, returning for instance |ērel| values
of 1.86% and 0.98% for log(n/m−3) and log(Tdust/K) with the
MNPCP estimator, respectively.

In summary, accounting for the fluxes of the neighbouring
LoSs in the input has not achieved its initial goal of improv-
ing the spatial consistency of the predicted dust densities and
temperatures perpendicular to the LoS. It has, however, demon-
strated a slight improvement of the predictive performance of
the model, indicating that knowledge of the fluxes in the neigh-
bouring LoSs provides additional constraints for the prediction
of the dust properties. However, this comes at a cost of flexibil-
ity, as all query LoSs now also require observations of the eight
adjacent LoSs in this approach. All in all, the NLoS-cINN does
not increase the spatial consistency and despite a slight perfor-
mance improvement does not appear to be a markedly superior
approach.

4.3. Realistic wavelength coverage test

As our final experiment, we trained and tested an SLoS-cINN for
a more realistically limited wavelength coverage, corresponding
to the central wavelengths of the following seven bands: WISE
22 µm, SOFIA 89 µm and 154 µm, Herschel PACS 100 µm
and 160 µm, Herschel SPIRE 350 µm, and LABOCA 870 µm.
The last two rows in Fig. 3 provide the qualitative example of
the dust density and temperature prediction results for a single
cube slice in comparison to the ground truth (see also Fig. A.3
for the corresponding input emission maps at the seven selected
wavelengths, as indicated by the highlighted panels). It is imme-
diately evident that the large reduction in wavelength coverage
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Fig. 6. Prediction performance summary for the NLoS-cINN on the held-out test data. 2D histograms of the direct one-to-one comparison of
prediction results to the ground truth (rows one and three) and the respective residuals (rows 2 and 4) are shown for the three different MAP
estimators (analogously to Fig. 4).

leads to a notably decreased quality in the reconstruction. While
larger scale and more diffuse features of the density and temper-
ature distributions are still being recovered very well, this is no
longer true for narrow details at high density and low tempera-
ture, in particular, which tend to be only partially reconstructed.
This is even more apparent in the full prediction summary of this

cube in Fig. B.8 (and the corresponding isodensity surface dia-
gram in Fig. B.9). In addition, the MAP point estimator appears
to produce a lot more and larger spatial discrepancies in the
predicted dust densities and temperatures perpendicular to the
LoS. Interestingly, where the MeanShift algorithm appeared to
show similar behaviour to the MAP estimator in the previous
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SLoS-cINN setup in terms of spatial inconsistencies, it seems
to provide more consistent prediction results here. Looking at
∆⊥LoS and ∆∥LoS in Table 2, this can be quantitatively confirmed
at least for the dust density as well, with ∆⊥LoS being only about
two times greater than ∆∥LoS in the MeanShift result, compared
to ∆⊥LoS ≈ 3∆∥LoS in the MAP outcome. With this outcome, it
seems that a determination of the most likely solution in the joint
target parameter space in this setup is more robust in terms of the
spatial consistency of the dust density than the marginalisation
approach in the MAP estimator.

Looking at the overall performance on the test set in Table 1,
the limitation to only seven wavelengths in this setup increases
the NRMSE to 0.084–0.098 and 0.036–0.046 for log(n/m−3) and
log(Tdust/K), respectively. The corresponding |ērel| values rise to
2.6–3.1% and 1.5–2.0%. Although this is a notable performance
decrease with |ērel| increasing by a factor of 1.5–2 in comparison
to the 23-wavelength setup, considering that this cINN has 16
wavelengths fewer to work with, this is still a quite satisfactory
performance. This indicates that the 3D reconstruction approach
can be feasible even for more limited observational coverage.

Investigating the prediction performance in more detail in
Fig. 7 (which provides a breakdown, analogously to Figs. 4
and 6), we find that the change in wavelength coverage also
influences the systematic tendencies of the prediction results.
Where for instance the binned median relative residual curve
for the dust density in the 23-wavelength SLoS-cINN outcome
exhibits a plateau between 108 and 1011 m−3 and only really leans
into systematic behaviour below and above this range, the sys-
tematic offsets are amplified in the seven wavelength prediction
outcomes. In particular for the MeanShift and MNPCP point
estimates we now find a pivot point at around 1010 m−3, below
which the density tends to be overestimated and above which it
is systematically underestimated. We find a similar amplification
of the earlier observed systematic behaviour in the MeanShift
and MNPCP estimates of the dust temperature, where there is
now a pivot point between over- and underestimation at about
19 K. Nevertheless, for most pixels, the error remains compara-
tively small, as indicated by |ērel|, and only few individual pixels
will manage to reach the maximum relative residual of about
60%. Part of this systematic behaviour can likely be attributed
to the relative lack of examples in the training data towards the
lower and upper limits of density and temperature, as we dis-
cuss in Sect. 4.1. However, given that this cINN also exhibits
systematic offsets within the parameter ranges, where a lot of
training data is available, this also points towards the increased
complexity of the recovery task with much less observational
information; in particular in the intermediate density and tem-
perature ranges. Evidence for the intrinsic increase in complexity
can be found in the shape of the predicted posterior distribu-
tions, a few examples of which are shown in Fig. B.3. Compared
to the full 23-wavelength SLoS-cINN, the predicted posteriors
of the seven wavelength limited model appear notably broader
and often exhibit double or multi-peaked distributions for both
density and dust temperature even in the ISRF-only RT con-
figuration. This shows that the cINN has both a harder time to
constrain the prediction and finds more degeneracy in the more
limited problem.

In summary, although the 7-wavelength SLoS-cINN exhibits
an (expected) reduction in predictive performance compared to
the 23-wavelength counterpart, this experiment proves that the
3D reconstruction of the dust distributions is quite feasible even
when subject to more realistic observational constraints. We also
want to emphasise again that our wavelength selection does not
necessarily preserve the most information for the given inverse

problem. A different, more optimal selection of wavelengths
might retain more of the predictive performance of the full 23-
wavelength cINN. We plan to look further into both the optimal
choice of wavelength combination and relative importance of
each wavelength (for the reconstruction) for realistic applica-
tions in our continued development of this 3D reconstruction
approach.

4.4. Comparison with classical SED fit

The dust emission is often modelled by a modified black body
(MBB) in order to construct a column density map and the tem-
perature distribution from multi-wavelength observations. As a
final test, we compared the predictive performance of our cINN
method to the results of a classical MBB fit. For the purposes
of this test, we employed the full 23 wavelengths of coverage
and focussed on the simpler RT scenario, comparing SED fit and
cINN approach on the 50 cubes that are only subject to the ISRF.
The dust emission, Iν, may be approximated as an MBB by:

Iν = Bν (Tdust)
(
1 − e−τν

)
≈ Bν (Tdust) τν=µgmHNHδgdκνBν (Tdust) ,

(16)

where τν is the optical depth, mH is the hydrogen mass, and the
black body Bν (Tdust) spectrum is modified by the dust opacity:

κν = 2
(
ν

ν0

)β
cm2 g−1 . (17)

For the opacity, we take a characteristic frequency of ν0 =
600 GHz and a spectral index of β = 2. Here, the dust tempera-
ture Tdust and the gas column density NH are the fit parameters to
be determined by a least-squares fit.

To compare the cINN outcome with the SED fit results we
compute the column number density, N, by integrating the den-
sity along each LoS for both the ground truth and SLoS-cINN
prediction outcome, that is:

N =
∫ L

0
n dl =

32∑
i=1

ni ∆l, (18)

where L indicates the depth of our test cubes of 0.2 pc and
∆l = L/32 is our cube spatial resolution. As a proxy for the
temperature determined by the SED fit, we can compute a
density-weighted average temperature T̄dust following:

T̄dust =

∑32
i=1 niTdust,i∑32

i=1 ni
. (19)

Figure 8 provides an example comparison of the column number
densities and density weighted average temperatures between the
outcome of the SED fit, the cINN prediction and the ground truth
for one example cube that is only subject to the ISRF. As this
example shows, both the SED fit and cINN approach manage to
reproduce the column number density map for this cube quite
accurately with overall absolute relative errors below 1%. How-
ever, the result based on the MAP cINN estimates returns notably
smaller residual errors than the SED fit. The maps based on the
MeanShift and MNPCP point estimators on the other hand are
about on par with the SED fit, if not slightly better. For Mean-
Shift this is likely explained by the on average higher absolute
relative error of the method itself in comparison to the MAP esti-
mator (as we describe in Sect. 4.1). The MNPCP estimator on the
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Fig. 7. Summary of the predictive performance on the held-out test data for the SLoS-cINN using only seven wavelenghts as input. Shown are 2D
histograms of the direct one-to-one comparison of prediction results to the ground truth (rows one and three) and the respective residuals (rows 2
and 4) for the three different MAP estimators (analogously to Fig. 4).

other hand performs worse here because of its inherent smooth-
ing action perpendicular to the LoS. As such small amounts of
material may get mixed between adjacent LoSs, increasing the
error on the column density. Looking now at the density averaged
temperature T̄dust, we find excellent results for the cINN based
estimates, whereas the SED fit outcome notably underestimates
the temperature by up to 10% or more. However, it is important

to note that the density-weighted average temperature is only an
approximation of the temperature that an SED fit would return,
so a discrepancy is to be expected. Lastly, Fig. 9 provides the per-
formance comparison between the SED fit and cINN approach
across all pixels of the 50 considered test cubes. This figure
confirms that the cINN based estimates of both column num-
ber density and density weighted average temperature are overall
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Fig. 8. Comparison of estimated column density and average temperature maps for one example cube in the ISRF-only RT configuration between
a classical SED fit and our cINN approach. The large panels on the top show the ground truth for the column density (left) and density weighted
average temperature (right), respectively. The smaller panels below each ground truth panel present a map of the estimates from the respective
method on the left and a map of the absolute relative error |erel| on the right. The example cube as in Figs. 3, B.1, and B.2 is shown.
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Fig. 9. Comparison of the predictive performance for column density and density averaged temperature between a classical SED fitting technique
and our cINN approach across all pixels of the 50 test cubes that are only subject to the ISRF. The top two rows show the results for the estimated
column density, whereas the bottom two present the density averaged dust temperature, T̄dust. In each group, the upper panels provide a direct
one-to-one comparison of the predicted values to the respective ground truth, whereas the lower panels show the corresponding relative residuals.

quite excellent. In addition, the cINN approach outperforms the
SED fit in all cases, although the margin is comparatively small
in the column number density for the MeanShift-based outcome.
We also note a slight tendency of the MeanShift and MNPCP
derived results towards overestimation of the density averaged
temperature. We emphasise that the MBB SED fit may only
provide a 2D estimate of the underlying density and temperature

distributions, whereas the advantage of the cINN approach is
the reconstruction of the full 3D information along the LoS. We
also note that while this test indicates the MAP point estimate
as the best suited choice to recover the column density, for the
full 3D reconstruction, we still recommend the MNPCP esti-
mate because of its higher degree of spatial consistency in the
3D structure.
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4.5. On the physical feasibility of the 3D reconstruction

The physical reason why our approach of reconstructing the
underlying 3D density and temperature structure works so well is
that the dust opacity strongly depends on the energy of the inci-
dent electromagnetic wave. In addition, there is a dependence
on the chemical composition and the grain size distribution,
but we keep those fixed here to the standard Milky Way val-
ues (Sect. 2.2). For further details we refer to Tielens (2010)
and Draine (2011). Overall, this means that different wavelengths
trace different optical depths within the cloud. As a consequence,
the observed radiation is accumulated in different ways along the
LoS and the resulting SED encodes critical information about
the density and temperature structure of the cloud, as also dis-
cussed in the Sect. 4.4. This process is highly degenerate, as
varying cloud configurations can lead to very similar SEDs; thus,
solving the inverse problem of reconstructing the cloud proper-
ties from the SED is a challenging task. This is where the INN
architecture can play out its full potential since it belongs to the
group of normalising flow methods. It offers direct access to the
full posterior distribution function and enables us to approach
this challenge in a statistically reliable way.

4.6. Application to real data

An application to real observational data of cloud cores is at this
stage not currently feasible with our setup. The main reason for
this is our treatment of the synthetic dust emission observations.
The choice to only use monochromatic dust emission and to not
include instrument-related effects, such as a consideration of the
PSF or noise renders our synthetic dust emission observations
notably different to what the actual observatories would mea-
sure. This results in a gap between the synthetic observable space
learned by our cINN models and the actual observable space
spanned by real measurements, so that prediction attempts are
bound to fail (for an example see Appendix B.2). For an applica-
tion to real data, the generation of the synthetic dust observations
thus needs to be further refined by accounting for instance for the
actual band width of real instruments and ensuring a proper sam-
pling and modelling of their respective PSFs. We plan to address
these challenges in our subsequent development of our method.

Apart from the current limitations of our synthetic dust
emission observations, we also identified another area that may
require improvements towards an application to real data. As we
describe in Sect. 2, our training data generation is aimed at cre-
ating simplified, synthetic analogues to objects such as ρ Oph A.
However, we suspect that our simplified prescription for adding
a star to the cubes, that is, randomly placing it in a region of low
dust density to emulate stellar feedback, is not likely to produce
truly realistic results. In this approach, the dust clouds are merely
illuminated by the star, rather than being mechanically affected
by the stellar feedback. Consequently, we do not actually model
clouds that are actively shaped by their nearby stars, as is (in
particular) the case for cores such as that of ρ Oph A. For that
reason, we plan to move to more sophisticated MHD simulations,
where stellar feedback is properly accounted for before we apply
our method to real observations.

5. Summary and conclusions

In this paper, we present a proof-of-concept deep-learning
approach to reconstructing interstellar dust distributions in 3D
from observed dust emission maps, focussing on the sub-parsec
length scales of individual star-forming clumps. To train this

approach, we modelled simplified analogues of the ρ Oph A
star-forming clump, employing the Cloud Factory dust cloud
simulations by Smith et al. (2020), Izquierdo et al. (2021). For
the basis of our training database, we selected 11.065 cubes from
the Cloud Factory, centered on clump-like dust aggregations,
with a side length of 0.2 pc and 32 × 32 × 32 pixel resolution.
We simulated the corresponding dust emission observations with
the POLARIS (Reissl et al. 2016, 2019) radiative transfer code
at 23 different wavelengths between 12 µm and 1300 µm, match-
ing the central wavelengths of the observational instruments of
WISE, MSX, Spitzer, SOFIA, Herschel, ALMA, APEX, and
CSO. For the radiative transfer, we considered two irradiation
scenarios. In the first, the dust is only subject to the interstellar
radiation field (ISRF) with an amplitude that matches condi-
tions in nearby star-forming cores. In the second, we randomly
inserted one B4-type star in a low density area inside the cube
in addition to the ISRF in order to emulate cloud cores that are
subject to the radiation of nearby stars. This procedure yields a
final training dataset of 22.130 mock dust clumps, including their
dust density and temperature distributions on a 3D grid and the
corresponding simulated dust emission fluxes in 23 wavelengths.

To reduce the complexity and dimensionality of the inverse
problem posed by the 3D reconstruction task, we broke the prob-
lem down to individual LoS under the assumption that (to first
order) the emission measured in a given pixel only depends
on the material along the corresponding LoS. Specifically, we
aimed to recover the 32 dust densities and temperatures along a
given LoS from the measured fluxes at different wavelengths in
the corresponding pixel of the dust emission map. For this pur-
pose, we trained a conditional invertible neural network (cINN),
which is a deep-learning approach that can efficiently estimate
full posterior distributions for the target parameters conditioned
on the observations. To recover point estimates from the poste-
rior distributions predicted by the cINN (and compare these to
the ground truth), we tested three different methods. The first
uses a 1D kernel density estimate to determine the maximum
a posteriori (MAP) prediction (that is the most likely value)
for the dust density and temperature from the marginalised
1D posterior distributions of the individual pixels. The sec-
ond method employs the MeanShift algorithm to determine the
most likely solutions as the point with the highest (probabil-
ity) density in the full 64-dimensional space of the predicted
posterior distributions. As both the MAP and MeanShift esti-
mators have no spatial consistency guarantee perpendicular to
the LoS, as per our reduction of the reconstruction task, we
introduced a third estimator to rectify this circumstance. This
method, dubbed median neighbour pixel combined posterior
(MNPCP), determines the point estimates for a given pixel by
accumulating the posterior samples of all neighbouring pixels
and computing the median of dust density and temperature on
this collection.

In total, we trained and tested cINNs for three different
formulations of the reconstruction task. The first consists of a
perfect information scenario, where we have access to the dust
emission maps at all 23 wavelengths. In the second, we extended
the network input to also account for the observed fluxes in
the neighbouring pixels of the query LoS to evaluate whether
this improves the spatial consistency of the prediction outcome.
Lastly, we considered a more realistically limited observational
scenario, where observations are only available in a combination
of seven wavelengths (matching the coverage of real observa-
tional data that is for instance available for the star-forming core
ρ Oph A). We then evaluated the performance of our trained
cINN models on a synthetic test set that consists of 50 mock
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dust clouds in both irradiation scenarios. Our main findings are
summarised in the following.

The model trained for the 23-wavelength scenario achieves
an excellent overall predictive performance, returning median
absolute relative errors |ērel| of 1.84 to 2.01% in log(n/m−3) and
0.87 to 1.01% in log(Tdust/K), depending on the choice of the
point estimator. Averaged over the five best reconstructed cloud
cores, |ērel| even goes as low as 1% and 0.5% in log(n/m−3) and
log(Tdust/K), respectively. In general, we find that the reconstruc-
tive performance is better for clouds that are only subject to the
ISRF, indicating that the presence of a star in the vicinity of a
mock dust cloud adds a notable level of complexity to the recon-
struction task. Breaking the predictive performance down to the
individual pixels, we also identified some systematic behaviours.
Although the dust densities and temperatures were recovered
well overall, we found trends for overestimating the density in
the low density regime (n < 108 m−3) and of slight underesti-
mations for very-high-density regions (n > 1011 m−3). A similar
tendency for underestimation also appears in the dust tempera-
ture point estimates for Tdust > 100 K. We identified a bias in
the training data as a potential explanation for this behaviour,
as the training database contains significantly fewer pixels in
these parameter ranges. It should be noted, however, that (in
particular) the Tdust > 100 K regime represents more extreme
conditions that are more typically found in HII regions or in
regions of strong outflow activity; however, these are neither
accounted for in the Cloud Factory simulations nor the focus of
our analysis. This incomplete modelling of the high temperature
regime may also tie into the comparatively worse reconstructive
performance.

The comparison of the three point estimators reveals no
clear favourite in terms of the quantitative performance mea-
sures. Although the MeanShift and MNPCP estimators achieve
a slightly better NRMSE than the MAP and the MAP estima-
tor provides the smallest |ērel|, the difference between the three
methods is only on the order of 10−3 in NRMSE and 0.1%
in |ērel|. The MAP and MeanShift estimates do suffer from the
aforementioned spatial inconsistencies perpendicular to the LoS
(as per construction). Although the MeanShift results appear to
be slightly less affected by this, we find that determining an
optimal bandwidth for MeanShift in the 64-dimensional target
parameter space can be tricky and may lead to oversmoothing.
The MNPCP approach provides much better results in term of
spatial consistency, but also exhibits oversmoothing behaviour,
which amplifies the systematic trends of the method at the edges
of the parameter ranges. Ultimately, we would generally rec-
ommend the MNPCP solution (despite its flaws), as it quite
effectively avoids the more severe and unphysical spatial incon-
sistencies perpendicular to the LoS that the MAP and MeanShift
approaches can hardly avoid (by construction).

For the cINN model that also accounts for the emission
in the neighbouring LoSs, we found an overall slight increase
in the predictive performance, but no significant improvement
in the spatial consistency of the prediction outcome. This exper-
iment indicates that accounting for the measured fluxes in the
neighbouring pixels may help with constraining the dust den-
sity and temperatures overall, but cannot counteract the inherent
spatial consistency bias of the LoS approach. In addition, this
setup is less flexible as it requires a query LoS to have mea-
surements for all eight neighbouring pixels, which excludes (for
instance) edge pixels. Although the slight performance improve-
ment of this approach is certainly desirable, it is overall not large
enough to clearly distinguish this setup as a superior method in
comparison to the single LoS approach.

Limiting the input to a more realistic coverage of seven
wavelengths – in our case corresponding to the central wave-
lengths of the WISE 22 µm, SOFIA 89 µm and 154 µm,
Herschel PACS 100 µm and 160 µm, Herschel SPIRE 350 µm,
and LABOCA 870 µm bands – naturally leads to a decrease
in predictive performance. Nevertheless, the cINN overall still
achieves a satisfactory performance with |ērel| on the order of
2.6 to 3.1% for log(n/m−3) and 1.5 to 2.0% in log(Tdust/K). The
most notable change in the behaviour of the seven wavelength
cINN is an amplification of the average systematic errors in the
predicted point estimates, leading to more difficulties overall in
reconstructing the dust distributions in very dense structures or
extremely diffuse regions. It is worth emphasising, however, that
the tested selection of wavelengths was inspired by available data
for ρ Oph A and not curated to maximise the network perfor-
mance. A more optimal wavelength configuration is certainly
likely to achieve even better reconstructive power. Lastly, we find
that an application of our approach to real observational data is
not yet feasible at this stage, as our simplified simulation setup is
not able to correctly model all the nuances of real dust emission
observations. We conclude that a more in-depth treatment of the
synthetic dust emission observations and improvements to our
simulation basis (to e.g. properly model the interaction between
stars and the dust through stellar feedback) may be required.

In summary, we have shown that a cINN-based approach
for the 3D reconstruction of dust distributions produces quite
excellent results in a perfect information scenario on synthetic
data and still retains a satisfactory performance, even for more
realistly limited observational coverage. For future applications
to real data, however, the method still requires a further refine-
ment of the simulation setup for the training data to resolve the
mismatch between real and synthetic observations, with some
adjustment to the training set sampling to reduce the potential
bias, and an analysis of the most informative band combinations
to maximise performance in realistic coverage scenarios. Once
these points have been resolved over the course of our follow-up
studies and we can demonstrate a successful application to real
observational data, we plan to make this approach available to
the community in the form of an open-source tool. Access to a
work-in-progress code may be provided upon reasonable request
beforehand.
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Appendix A: Training set generation

Table A.1: Overview of filter bands and instruments considered
in this study.

Instrument Band λ(µm) Reference

WISE 3 12 Wright et al. (2010)
WISE 4 22 Wright et al. (2010)
MSX/SPIRIT-III 2 12.13 Egan et al. (1999)
MSX/SPIRIT-III 3 14.65 Egan et al. (1999)
MSX/SPIRIT-III 4 21.34 Egan et al. (1999)
Spitzer MIPS 24 Table 1, Dole et al. (2003)
SOFIA / HAWC+ A 53 Harper et al. (2018)
SOFIA / HAWC+ B 63 Harper et al. (2018)
SOFIA / HAWC+ C 89 Harper et al. (2018)
SOFIA / HAWC+ D 154 Harper et al. (2018)
SOFIA / HAWC+ E 214 Harper et al. (2018)
Herschel PACS 1 70 PACS Photometer Quickstart Guide, Exter (2017)
Herschel PACS 2 100 PACS Photometer Quickstart Guide, Exter (2017)
Herschel PACS 3 160 PACS Photometer Quickstart Guide, Exter (2017)
Herschel SPIRE 1 250 Table 5.2, SPIRE Handbook, Valtchanov (2018)
Herschel SPIRE 2 350 Table 5.2, SPIRE Handbook, Valtchanov (2018)
Herschel SPIRE 3 500 Table 5.2, SPIRE Handbook, Valtchanov (2018)
ALMA Band 10 350 Table 7.1, Cortes et al. (2022)

Table 7.1, Cortes et al. (2022)
ALMA Band 9 460 Table 7.1, Cortes et al. (2022)

Table 7.1, Cortes et al. (2022)
ALMA Band 8 690 Table 7.1, Cortes et al. (2022)

Table 7.1, Cortes et al. (2022)
ALMA Band 7 945 Table 7.1, Cortes et al. (2022)

Table 7.1, Cortes et al. (2022)
ALMA Band 6 1300 Table 7.1, Cortes et al. (2022)

Table 7.1, Cortes et al. (2022)
APEX LABOCA 870 APEX LABOCA website

(https://www.apex-telescope.org/ns/laboca-calibration/)
CSO Bolocam 1100 Bolocam website

(http://www.cso.caltech.edu/bolocam/ProposerInfo.html)

Notes. For each instrument and band, we list the central wavelength λ
and the literature reference for the quoted values. We note that we treat
ALMA Band 10 and Herschel SPIRE 2 as one band in our analysis,
because they share the same central wavelength and we are not consider-
ing any instrument related effects. Consequently, there is no difference
in the corresponding synthetic dust emission maps between SPIRE 2
and ALMA Band 10 in our analysis.

This appendix provides additional material with regard to the
construction of our training data. Table A.1 provides a summary
of the different bands we consider in our generation of the syn-
thetic dust emission maps in Section 3. Listed are the instrument
name, band ID, the central wavelength we assume for the band,
and the reference indicating from where we have extracted the
respective information. Figures A.1 and A.2 provide histograms
for the effective prior distributions for the dust density and tem-
perature, and the simulated fluxes in all wavelengths that the
cINN sees during training, summarised over all the pixels in our
training data set. We emphasise that these effective priors are
an outcome of our training data selection, depicting the actual
distributions of the respective parameters in the final training
data set, and not a prescription after which the training data is
selected. Lastly, Figure A.3 shows an example of the emission
maps generated by POLARIS at the 23 different wavelengths
that we consider for the example cube used in Figures 3 (top
row), B.1, B.2, and B.3 (top row).
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Fig. A.1: Histograms of the prior distributions and correlation of the target parameters in the training data over all pixels. The top-
left and bottom-right panels show the 1D distributions of the number density and dust temperature, respectively. In both panels, the
boxes at the top left provide the minimum and maximum of the respective parameter. The bottom left panel presents a 2D histogram
of the effective prior distribution in the combined density-temperature space.
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Fig. A.2: Histograms of the prior distributions for the observables in the training data over all cubes and pixels
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Fig. A.3: Example of the synthetic dust emission maps at all 23 considered wavelengths that serve as the input to our cINN approach.
These correspond to bands of specific instruments (as labelled on the top of each panel), but do not account for PSF-related resolution
effects of the respective telescopes. The shown example corresponds to the example cube in the ISRF-only configuration that is
also the subject of Figures 3, B.1, and B.2. The panels outlined with the black dashed lines correspond to the seven wavelengths
considered in our more limited experiment in Section 4.3. We emphasise that the presented flux maps are corrected for distance.
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Appendix B: Additional material for the
performance analysis

This appendix provides complementary diagrams for the per-
formance analysis of our cINN approach outlined in Section 4.
Figure B.1 provides an extended comparison of the point estima-
tion results to the ground truth for the example cube shown in the
first to rows of Figure 3, depicting all 32 slices of the cube. As
an alternative visualisation of this comparison, Figure B.2 shows

3D isodensity surface diagrams for densities of 1010 (grey) and
1011 m−3 (red) for two different rotation angles of the example
cube, comparing again the results of our three point estimators
to the ground truth. As discussed in Section 4.1, this diagram
illustrates the very good recovery of the 3D dust structure at
intermediate densities, whereas some finer, high-density struc-
tures may be subject to underestimation and are, thus, lost in this
visualisation. As an extension to Figure 3, Figure B.3 provides
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Fig. B.1: Comparison of the point estimate prediction results to the ground truth for all slices of one example cube that is only subject
to the ISRF. In each panel, the subpanels show from top left to bottom right the cube slices going along the LoS from front to back.
The left and right columns show the dust density and dust temperature respectively. From top to bottom, the rows indicate the ground
truth and the MAP, MeanShift, and MNPCP estimates based on the outcome of the single LoS cINN using all 23 wavelengths. This
diagram shows the full cube of the single slices shown in the first two rows of Figure 3.
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Fig. B.2: 3D isodensity surface diagrams for one example test cube in the ISRF-only radiation configuration, comparing the SLoS-
cINN prediction results to the ground truth. Here the two rows show different rotation angles of the given cube. The grey surfaces
indicate a density of 1010 m−3, whereas red surfaces mark the 1011 m−3 density level.

Table B.1: Performance summary for the viewing angle comparison experiment.

Viewing angle

Point estimator Measure Parameter Front face Right face Bottom face

MAP
NRMSE log(n/m−3) 0.0510 0.0531 0.0517

log(Tdust/K) 0.0633 0.0682 0.0648

|ērel| (%) log(n/m−3) 1.41+1.45
−0.83 1.53+1.58

−0.90 1.38+1.39
−0.81

log(Tdust/K) 0.61+1.03
−0.39 0.66+1.16

−0.43 0.58+0.96
−0.37

MeanShift
NRMSE log(n/m−3) 0.0480 0.0499 0.0490

log(Tdust/K) 0.0522 0.0561 0.0455

|ērel| (%) log(n/m−3) 1.53+1.42
−0.88 1.62+1.52

−0.94 1.48+1.38
−0.85

log(Tdust/K) 0.70+1.12
−0.45 0.73+1.23

−0.47 0.65+1.03
−0.41

MNPCP
NRMSE log(n/m−3) 0.0456 0.0476 0.0455

log(Tdust/K) 0.0506 0.0545 0.0501

|ērel| (%) log(n/m−3) 1.40+1.33
−0.80 1.50+1.44

−0.87 1.37+1.30
−0.79

log(Tdust/K) 0.70+1.02
−0.42 0.74+1.15

−0.45 0.67+0.96
−0.40

Notes. NRMSE and the median absolute relative error |ērel| (along with the 25% and 75% quantiles) are given, respectively, for the dust density
and temperature prediction evaluated across all pixels of the 50 test cubes subject to the ISRF-only case. All predictions are made with the 23-
wavelength SLoS-cINN here (Section 4.1).

examples for the predicted posterior distributions in the different
network and cube configurations analysed in Figure 3.

Analogously to Figures B.1 and B.2, Figures B.4 and B.5
show the respective results for the cube in the ISRF + star radi-
ation configuration (rows 2&3 of Figure 3), Figures B.6 and
B.7 present the outcome as derived from the NLoS-cINN (Sec-
tion 4.2), and Figures B.8 and B.9 illustrate the predictions
from the SLoS-cINN that is limited to the seven wavelengths
configuration (Section 4.3).

Appendix B.1. Influence of the observation angle

In Section 2.2, we outline that during our training set genera-
tion we only simulate synthetic observations for the simulation

cubes from one viewing angle. In particular, it our simulated
observations are performed from the same direction for all train-
ing cubes. Although somewhat unlikely, this circumstance begs
the question, whether the chosen viewing angle may have intro-
duced a bias in our trained method, so the reconstruction from
other viewing angles may differ. Naturally, the simulated syn-
thetic observations depend on the viewing angle of the cloud
as the contribution of different parcels of gas in the cloud to
the observed dust emission depends on the 3D position after
all. Therefore, it is to be expected that a reconstruction of the
same cloud from two different viewing angles is not 100% iden-
tical. To test how the viewing angle may affect the reconstructive
performance and rule out a direction bias in our method, we
conducted an experiment where we rotated the 50 cubes that

A246, page 29 of 38



Ksoll, V. F. et al.: A&A, 683, A246 (2024)

SL
oS

 c
IN

N 
 IS

RF
 o

nl
y

9.0

9.5

10.0

10.5

11.0

11.5

lo
g(

n/
m

3 )

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

log(T
dust /K)

10
.5

11
.0

11
.5

0
1
2

10
.5

11
.0

11
.5 10 11

0
1
2
0
1
2

Pr
ob

ab
ilit

y 
De

ns
ity

Probability Density

SL
oS

 c
IN

N 
 IS

RF
 +

 st
ar

9.0

9.5

10.0

10.5

11.0

lo
g(

n/
m

3 )

1.4

1.6

1.8

2.0

2.2

log(T
dust /K)

7.5 10
.0

0.0
0.2
0.4
0.6

7.5 10
.0 7.5 10
.0

0.0
0.2
0.4
0.0
0.5
1.0

Pr
ob

ab
ilit

y 
De

ns
ity

Probability Density

NN
Lo

S 
cIN

N 
 IS

RF
 o

nl
y

9.0

9.5

10.0

10.5

11.0

lo
g(

n/
m

3 )

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

log(T
dust /K)

11
.0

11
.5

0
1
2
3
4

11
.0

11
.5

10
.5

11
.0

0
1
2
3
4
0
1
2
3

Pr
ob

ab
ilit

y 
De

ns
ity

Probability Density

SL
oS

 c
IN

N 
(7

) 
 IS

RF
 o

nl
y

8.5

9.0

9.5

10.0

10.5

11.0

11.5

lo
g(

n/
m

3 )

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

log(T
dust /K)

8 10

0.0
0.5
1.0
1.5

7.5 10
.0 7.5 10
.0

0.0
0.5
1.0
1.5

0
1
2

Pr
ob

ab
ilit

y 
De

ns
ity

Probability Density

log(n/m 3) log(Tdust/K)

1.1 1.2

0
10
20
30

1.0 1.11.0 1.1

0
10
20
30
0
10
20
30

1.3
5

1.4
0

0
20
40

1.3
5

1.4
0

1.3
5

1.4
0

1.4
5

0
10
20
30
0
10
20
30
40

1.1
0

1.1
5

0
20
40
60

1.0 1.11.0
0

1.0
5

0
20
40
60
0
10
20

1.1 1.2 1.3

0
10
20

1.0
0

1.2
5

1.0
0

1.2
5

0
5
10
0
5
10
15

Fig. B.3: Comparison of the predicted posterior distributions for a few example pixels of the cubes shown in Figure 3. The panels
in the leftmost and right-most column show the MAP prediction results for density and dust temperature for the same slice as
in Figure 3, respectively. The middle two columns provide histograms of the predicted posterior distributions for the nine pixels
indicated by the white square in the left-most and right-most columns. The orange curve represents the kernel density estimate used
to determine the MAP values, whereas the red dashed line mark the respective ground truth value of each example pixel. We note
that within each of the posterior histogram panels, the subpanels share the same x axis column-wise and the same y axis row-wise.

are only subject to the ISRF, resimulating the corresponding
synthetic dust emission observations and then reconstructing
again the 3D distribution of the dust with the 23-wavelength
SLoS-cINN. Compared to the main viewing angle, for which
we present the performance in Section 4.1, we tested two addi-
tional observation directions. In the first, the cubes are rotated
by 90° clockwise around the vertical axis in the plane of the pri-
mary viewing angle; namely, we are now observing the right
face of the cube instead of the front face. For the second
test, we rotated the cube around the horizontal axis by 90°
clockwise, so that we are now observing the bottom face of
the cube.

Figure B.10 provides an example comparison of the recon-
struction result for one slice (along the original LoS) of one
example cube (the same as in Figure 3) from the three differ-
ent viewing angles that we have tested. As we can see, the cINN
recovers the bulk of the structure in this slice quite well, indepen-
dently of the observation direction. Naturally, smaller details do
differ a bit, but as mentioned before this is to be expected, both
because the information encoded in the synthetic dust emission
maps may not be identical and because the spatial consistency
of the predicted posterior distributions depends on the viewing
angles. Where the original viewing angles produces posteriors
that are consistent along the LoS going into the plane of the
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Fig. B.4: Comparison of the point estimate prediction results to the ground truth for all slices of one example cube that is subject
to the ISRF and one B4 star. In each panel, the subpanels show (from top-left to bottom-right) the cube slices going along the LoS
from front to back. The left and right column show the dust density and dust temperature respectively. From top to bottom, the rows
indicate the ground truth and the MAP, MeanShift and MNPCP estimates, based on the outcome of the SLoS-cINN using all 23
wavelengths. This diagram shows the full cube of the single slice shown in rows 3 and 4 of Figure 3. The white star symbol in the
right column indicates the approximate position of the star, defined as the hottest pixel in the cube for both the ground truth and the
prediction results.
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Fig. B.5: 3D isodensity surface diagrams for one example test cube in the ISRF + star radiation configuration, comparing the SLoS-
cINN prediction results to the ground truth. Here the two rows show different rotation angles of the given cube. The grey surfaces
indicate a density of 1010 m−3, whereas red surfaces mark the 1011 m−3 density level. The yellow star indicates the position of the B4
anaologue placed inside the cube.

shown slice, the other observation directions provide consistency
along the perpendicular LoSs now. As a consequence, features in
the reconstruction may appear a little more elongated along the
given LoS compared to the other viewing angles, as becomes
apparent when comparing the two right columns in Figure B.10.
Table B.1 provides a summary of the predictive performance of
the 23-wavelength SLoS-cINN for the three different viewing
angles across all 50 test cubes. As we can see, the performance
is very similar, independently of the direction from where the
cubes were observed. As such, we can conclude that the cINN
has not been biased towards a prefered observational direction
and can reconstruct the synthetic dust clouds quite reliably even
from different viewing angles.

Appendix B.2. Influence of the instrument PSF

In Section 2.2, we are ignoring any instrument related effects in
our generation of the synthetic dust emission observations used
throughout the rest of this study. Our reasoning for this is that
proper modelling of these effects is not trivial. Nevertheless, the
latter will be a necessary step in the ongoing development of
our approach in order to ultimately apply it to real observational
data. In this appendix, we perform a simplified test to demon-
strate how a cINN that is trained on fully resolved data behaves
on data that is subject to resolution effects. For this purpose, we
took the 50 test cubes subject only to the ISRF and modified
their corresponding synthetic dust emission maps to simulate the
influence of the PSFs of the respective telescope instruments. For
simplicity, we approximated this effect by convolving the fully
resolved synthetic dust emission maps with a Gaussian, where
the standard deviations are matched to the full width half max-
ima (FWHM) of the PSFs. Notably, this includes the implicit
assumption that all considered telescopes would have the same
pixel size; in this case, matching that of our input simulated data.

For the convolution, we assumed a distance to the observed
cubes, at which the PSFs of all considered instruments are
sampled by at least two pixels in the dust emission maps (i.e.

to fulfil the Nyquist sampling criterion). Given the excellent spa-
tial resolution of ALMA, this distance would be quite large if
we were to consider all 23 simulated wavelengths (namely larger
than 8500 pc). Therefore, we conduct this test only on the seven
wavelength subset used in Section 4.3, for which the PSF sam-
pling criterion is fulfilled at a distance of d = 397 pc. Figure B.11
shows an example for how this PSF consideration affects the
input dust emission maps (analogously to Figure A.3, we select
the same example cube here). As we can see, if we require that
all seven considered filters are Nyquist sampled, meaning that
the selected distance is naturally dictated by the instrument with
the best resolution out of the seven (in this case Herschel PACS at
100µm), then there is already a notable loss in detail in the input
dust emission maps for instruments with a worse resolution.

We went on to test how a cINN (namely the seven wave-
length SLoS-cINN discussed in Section 4.3) that is trained on
perfectly resolved data performs on input observations that are
subject to these varying resolution effects at the 397 pc distance
on the 50 ISRF-only test cubes. Figure B.12 presents an exam-
ple MAP prediction result in comparison to the ground truth for
the same cube shown in Figure B.1. As we can see, the cINN
can no longer recover the dust densities and temperatures at all,
a result that we find for all 50 tested cubes. This outcome is not
surprising, however, as this resolution effect is not small, render-
ing data affected by it likely quite far outside of the observable
domain that this cINN has learned, where it is bound to fail.
While this particularly strong failure here might be exacerbated
by the limited wavelength coverage or filter choice, this still con-
firms the necessity to account for instrumental effects already
during training.

To identify at which point the prediction breaks down, we
followed up with an additional test that further simplifies the
consideration of the PSF effects. Instead of convolving the emis-
sion maps in each wavelength with the (approximate) PSF of the
corresponding instrument filter, we applied the same PSF reso-
lution to all wavelengths and investigated the beam size at which
the prediction starts to deteriorate. For simplicity, we directly
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Fig. B.6: Comparison of the point estimate prediction results to the ground truth for all slices of one example cube that is only
subject to the ISRF. In each panel, the subpanels show from top left to bottom right the cube slices going along the LoS from front to
back. The left and right columns show the dust density and dust temperature, respectively. From top to bottom, the rows indicate the
ground truth and the MAP, MeanShift, and MNPCP estimates based on the outcome of the NLoS-cINN using all 23 wavelengths
(as opposed to the SLoS-cINN outcome shown in Fig. B.1). This diagram shows the full cube of the single slice shown in rows 5&6
of Figure 3.
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Fig. B.7: 3D isodensity surface diagrams for one example test cube in the ISRF-only radiation configuration, comparing the NLoS-
cINN prediction results to the ground truth in the left column. Here, the two rows show different rotation angles of the given cube.
The grey surfaces indicate a density of 1010 m−3, whereas red marks the 1011 m−3 density level. These data are analogous to the
SLoS-cINN results in Figure B.2.

specified the FWHM of the Gaussian convolution kernel in pix-
els for this experiment. For reference, the tested FWHM values
of 1.5, 2, 3, 5, and 10 pixels correspond to distances of 79.9,
106.5, 159.8, 266.4, and 532.7 pc, respectively, when using (for
instance) the Herschel SPIRE 350µm filter. Figure B.13 pro-
vides a summary of this test for the same example cube (in
the ISRF-only configuration) used in Figure B.12, comparing
the prediction results on the smoothed emission maps for vary-
ing FWHMs to the reference outcome on the original synthetic
observations. As we can see, the cINN predictions are some-
what robust with respect to the smoothing of the input emission
maps up to a FWHM of the Gaussian beam of 3 pixels, exhibiting
only small changes in the NRMSEs for this example. However,
the prediction outcome rapidly deteriorates for the larger tested
FWHMs of 5 and 10 pixels. Given this outcome, the failure in the
previous test might be explained by a combination of the com-
plexity of varying resolution at each wavelength and some rather
large PSFs at the tested distance for the central wavelengths of
Herschel SPIRE 350µm and APEX LABOCA. In conclusion,
this test shows that our approach can compensate a minor degree
of unaccounted for resolution effects if they are the same at all
wavelengths. Nevertheless, for realistic applications with varia-
tions between observational instruments, proper modelling of the
instrumental effects within the training data will be necessary to
build a truly robust reconstruction model.
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Fig. B.8: Comparison of the point estimate prediction results to the ground truth for all slices of one example cube that is only
subject to the ISRF. In each panel, the subpanels show (from top-left to bottom-right) the cube slices going along the LoS from front
to back. The left and right columns show the dust density and dust temperature respectively. From top to bottom the rows indicate
the ground truth and the MAP, MeanShift, and MNPCP estimates based on the SLoS-cINN that uses only seven wavelengths. This
diagram shows the full cube of the single slice shown in the last two rows of Figure 3.
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Fig. B.9: 3D isodensity surface diagrams for one example test cube in the ISRF-only radiation configuration, comparing the SLoS-
cINN prediction results, based on only seven wavelengths, to the ground truth. Here, the two rows show different rotation angles of
the given cube. The grey surfaces indicate a density of 1010 m−3, whereas red surfaces mark the 1011 m−3 density level. These data
are analogous to the 23-wavelength SLoS results shown in Figure B.2.
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Fig. B.10: Comparison of MNPCP prediction results from different viewing angles to the ground truth for a single slice of an
example cube subject only to the ISRF. Shown is the same example cube as in Figure 3 and all predictions are determined with
the 23-wavelength SLoS-cINN. The presented slice is taken along the main viewing angle analysed in this work (Section 4). The
results in the second column correspond to the nominal prediction outcome derived from the main viewing angle (i.e. the cube is
observed from the front). The arrow and eye symbol in the third and fourth columns indicate the direction from which the cube
is observed instead to generate the corresponding prediction result. The NRMSEs and median absolute relative errors listed in the
three right-most panels are determined over the depicted slice only.
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Fig. B.11: Comparison of dust emission maps between the perfect resolution scenario and a case that accounts for the PSFs of the
respective instruments for the limited filter configuration used in Section 4.3. The red circle in the bottom row panels indicates the
FWHM of the respective PSFs. We note that this example is based on the assumption that all considered telescopes share the same
pixel size, matching our simulation resolution at a query distance of d = 397 pc.

Fig. B.12: Comparison of the seven wavelength SLoS-cINN MAP prediction result to the ground truth for one example cube that is
only subject to the ISRF. Same cube as in Figure B.8 is shown, with the difference being that here the input dust emission maps were
first convolved with the PSFs of the respective instruments, corresponding to the input shown in the bottom row in Figure B.11.
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Fig. B.13: Comparison of prediction results with the seven wavelength SLoS-cINN for different amounts of smoothing applied to the
input observations at all wavelengths equally. The top row shows the emission maps at the central wavelength of the Herschel SPIRE
350 µm filter as a an example to illustrate the effect of the convolution with a Gaussian beam. The red circle in each of these panels
indicates the FWHM of the respective Gaussian kernel. The second and third row show the corresponding MAP estimates for dust
density and temperature, respectively, for one example slice of the same cube analysed throughout the paper (i.e. the same slice as in
Figures 3, B.3, B.10). The fourth and the fifth rows present a 2D histogram that directly compares the ground truth to the predicted
density and temperature MAP estimates, respectively, for all pixels of this test cube, summarising the predictive performance.

A246, page 38 of 38


	A deep-learning approach to the 3D reconstruction of dust density and temperature in star-forming regions
	1 Introduction
	2 Training data
	2.1 Simulation data
	2.2 Synthetic images

	3 Reconstruction approach
	3.1 The conditional invertible neural network
	3.2 Single LoS reformulation
	3.3 Implementation details
	3.3.1 Additional data preprocessing
	3.3.2 Training setup and sampling strategy

	3.4 Making point estimates
	3.5 Spatial consistency
	3.5.1 MNPCP point estimator
	3.5.2 Neighbour LoS reformulation

	3.6 Performance evaluation

	4 Results
	4.1 Choice of the point estimator and influence of the radiation configuration
	4.2 Taking the neighbouring LoSs into account
	4.3 Realistic wavelength coverage test
	4.4 Comparison with classical SED fit
	4.5 On the physical feasibility of the 3D reconstruction
	4.6 Application to real data

	5 Summary and conclusions
	Acknowledgements
	References
	Appendix A: Training set generation
	Appendix B: Additional material for the performance analysis
	B.1 Influence of the observation angle
	B.2 Influence of the instrument PSF



