242 research outputs found

    Probing the Site for r-Process Nucleosyntheis with Abundances of Barium and Magnesium in Extremely Metal-Poor Stars

    Get PDF
    We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms = 20 Msun, a unique feature in the observed distribution of [Ba/Mg] vs.[Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -2.7 < [Mg/H] < -2.3, with two distinct processes. The first branch, which we call the ``y''-branch, is associated with the production of Ba and Mg from individual massive supernovae. We conclude that SNe II with Mms = 20 Msun are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms > 20 Msun. The second branch, which we call the ``i''-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms < 20 Msun that do not synthesize r-process elements, and applies to stars with observed Mg abundances in the range [Mg/H] < -2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II which are associated with stars of progenitor mass Mms < 20 Msun are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.Comment: 6 pages including 3 figures, to appear in ApJ Letter

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    Atomic Diffusion and Mixing in Old Stars I. VLT/FLAMES-UVES Observations of Stars in NGC 6397

    Full text link
    We present a homogeneous photometric and spectroscopic analysis of 18 stars along the evolutionary sequence of the metal-poor globular cluster NGC 6397 ([Fe/H] = -2), from the main-sequence turnoff point to red giants below the bump. The spectroscopic stellar parameters, in particular stellar-parameter differences between groups of stars, are in good agreement with broad-band and Stroemgren photometry calibrated on the infrared-flux method. The spectroscopic abundance analysis reveals, for the first time, systematic trends of iron abundance with evolutionary stage. Iron is found to be 31% less abundant in the turnoff-point stars than in the red giants. An abundance difference in lithium is seen between the turnoff-point and warm subgiant stars. The impact of potential systematic errors on these abundance trends (stellar parameters, the hydrostatic and LTE approximations) is quantitatively evaluated and found not to alter our conclusions significantly. Trends for various elements (Li, Mg, Ca, Ti and Fe) are compared with stellar-structure models including the effects of atomic diffusion and radiative acceleration. Such models are found to describe the observed element-specific trends well, if extra (turbulent) mixing just below the convection zone is introduced. It is concluded that atomic diffusion and turbulent mixing are largely responsible for the sub-primordial stellar lithium abundances of warm halo stars. Other consequences of atomic diffusion in old metal-poor stars are also discussed.Comment: 20 pages (emulateapj), 11 figures, accepted for publication in Ap

    Center-to-Limb Variation of Solar Line Profiles as a Test of NLTE Line Formation Calculations

    Full text link
    We present new observations of the center-to-limb variation of spectral lines in the quiet Sun. Our long-slit spectra are corrected for scattered light, which amounts to 4-8 % of the continuum intensity, by comparison with a Fourier transform spectrum of the disk center. We examine the effect of inelastic collisions with neutral hydrogen in NLTE line formation calculations of the oxygen infrared triplet, and the Na I 6160.8 A line. Adopting a classical one-dimensional theoretical model atmosphere, we find that the sodium transition, formed in higher layers, is much more effectively thermalized by hydrogen collisions than the high-excitation oxygen lines. This result appears as a simple consequence of the decrease of the ratio NH/Ne with depth in the solar photosphere. The center-to-limb variation of the selected lines is studied both under LTE and NLTE conditions. In the NLTE analysis, inelastic collisions with hydrogen atoms are considered with a simple approximation or neglected, in an attempt to test the validity of such approximation. For the sodium line studied, the best agreement between theory and observation happens when NLTE is considered and inelastic collisions with hydrogen are neglected in the rate equations. The analysis of the oxygen triplet benefits from a very detailed calculation using an LTE three-dimensional model atmosphere and NLTE line formation. The chi**2 statistics favors including hydrogen collisions with the approximation adopted, but the oxygen abundance derived in that case is significantly higher than the value derived from OH infrared transitions.Comment: 10 pages, 8 figures, to appear in A&

    Li - O anti-correlation in NGC 6752: evidence for Li-enriched polluting gas

    Full text link
    Elemental correlations and anti-correlations are known to be present in globular clusters (GCs) owing to pollution by CNO cycled gas. Because of its fragility Li is destroyed at the temperature at which the CNO cycling occurs, and this makes Li a crucial study for the nature of the contaminating stars. We observed 112 un-evolved stars at the Turnoff of the NGC6752 cluster with FLAMES at the VLT to investigate the presence and the extent of a Li-O correlation. This correlation is expected if there is a simple pollution scenario. Li (670.8 nm) and O triplet (771 nm) abundances are derived in NLTE. All stars belong to a very narrow region of the color-magnitude diagram, so they have similar stellar parameters (Teff, log g). We find that O and Li correlate, with a high statistical significance that confirms the early results for this cluster. At first glance this is what is expected if a simple pollution of pristine gas with CNO cycled gas (O-poor, Li-poor) occurred. The slope of the relationship, however, is about 0.4, and differs from unity by over 7 Sigma. A slope of one is the value predicted for a pure contamination model. We confirm an extended Li-O correlation in non evolved stars of NGC 6752. At the same time the characteristic of the correlation shows that a simple pollution scenario is not sufficient to explain the observations. Within this scenario the contaminant gas must have been enriched in Li. This would rule out massive stars as main polluters, and favor the hypothesis that the polluting gas was enriched by intermediate or high-mass AGB stars, unless the former can be shown to be able to produce Li. According to our observations, the fraction of polluting gas contained in the stars observed is a considerable fraction of the stellar mass of the cluster.Comment: 8pages, 2 figures, accepted by A&A Lette

    Stellar Iron Abundances: non-LTE Effects

    Get PDF
    We report new statistical equilibrium calculations for Fe I and Fe II in the atmosphere of Late-Type stars. We used atomic models for Fe I and Fe II having respectively 256 and 190 levels, as well as 2117 and 3443 radiative transitions. Photoionization cross-sections are from the Iron Project. These atomic models were used to investigate non-LTE effects in iron abundances of Late-Type stars with different atmospheric parameters. We found that most Fe I lines in metal-poor stars are formed in conditions far from LTE. We derived metallicity corrections of about 0.3 dex with respect to LTE values, for the case of stars with [Fe/H] ~ -3.0. Fe II is found not to be affected by significant non-LTE effects. The main non-LTE effect invoked in the case of Fe I is overionization by ultraviolet radiation, thus classical ionization equilibrium is far to be satisfied. An important consequence is that surface gravities derived by LTE analysis are in error and should be corrected before final abundances corrections. This apparently solves the observed discrepancy between spectroscopic surface gravities derived by LTE analyses and those derived from Hipparcos parallaxes. A table of non-LTE [Fe/H] and log g values for a sample of metal-poor late-type stars is given.Comment: 22 pages, 9 figures, 1 table, ApJ style, accepte

    The solar photospheric abundance of carbon.Analysis of atomic carbon lines with the CO5BOLD solar model

    Get PDF
    The use of hydrodynamical simulations, the selection of atomic data, and the computation of deviations from local thermodynamical equilibrium for the analysis of the solar spectra have implied a downward revision of the solar metallicity. We are in the process of using the latest simulations computed with the CO5BOLD code to reassess the solar chemical composition. We determine the solar photospheric carbon abundance by using a radiation-hydrodynamical CO5BOLD model, and compute the departures from local thermodynamical equilibrium by using the Kiel code. We measure equivalent widths of atomic CI lines on high resolution, high signal-to-noise ratio solar atlases. Deviations from local thermodynamic equilibrium are computed in 1D with the Kiel code. Our recommended value for the solar carbon abundance, relies on 98 independent measurements of observed lines and is A(C)=8.50+-0.06, the quoted error is the sum of statistical and systematic error. Combined with our recent results for the solar oxygen and nitrogen abundances this implies a solar metallicity of Z=0.0154 and Z/X=0.0211. Our analysis implies a solar carbon abundance which is about 0.1 dex higher than what was found in previous analysis based on different 3D hydrodynamical computations. The difference is partly driven by our equivalent width measurements (we measure, on average, larger equivalent widths with respect to the other work based on a 3D model), in part it is likely due to the different properties of the hydrodynamical simulations and the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD analyses is in slightly better agreement with the constraints of helioseismology than the previous 3D abundance results. (Abridged)Comment: Astronomy and Astrophysics, accepte

    Spectroscopic abundance analysis of dwarfs in young open cluster IC 4665

    Full text link
    We report a detailed spectroscopic abundance analysis for a sample of 18 F-K dwarfs of the young open cluster IC 4665. Stellar parameters and element abundances of Li, O, Mg, Si, Ca, Ti, Cr, Fe and Ni have been derived using the spectroscopic synthesis tool SME (Spectroscopy Made Easy). Within the measurement uncertainties the iron abundance is uniform with a standard deviation of 0.04 dex. No correlation is found between the iron abundance and the mass of the stellar convective zone, and between the Li abundance and the Fe abundance. In other words, our results do not reveal any signature of accretion and therefore do not support the scenario that stars with planets (SWPs) acquire their on the average higher metallicity compared to field stars via accretion of metal-rich planetary material. Instead the higher metallicity of SWPs may simply reflect the fact that planet formation is more efficient in high metallicity environs. However, since that many details of the planet system formation processes remain poorly understood, further studies are needed for a final settlement of the problem of the high metallicity of SWPs. The standard deviation of [Fe/H] deduced from our observations, taken as an upper limit on the metallicity dispersion amongst the IC 4665 member stars, has been used to constrain proto-planetary disk evolution, terrestrial and giant planets formation and evolution processes. Our results do not support the possibility that the migration of gas giants and the circularization of terrestrial planets' orbits are regulated by their interaction with a residual population of planetesimals and dust particles.Comment: 18 pages, 6 figures, accepted for publication in Ap

    On inelastic hydrogen atom collisions in stellar atmospheres

    Full text link
    The influence of inelastic hydrogen atom collisions on non-LTE spectral line formation has been, and remains to be, a significant source of uncertainty for stellar abundance analyses, due to the difficulty in obtaining accurate data for low-energy atomic collisions either experimentally or theoretically. For lack of a better alternative, the classical "Drawin formula" is often used. Over recent decades, our understanding of these collisions has improved markedly, predominantly through a number of detailed quantum mechanical calculations. In this paper, the Drawin formula is compared with the quantum mechanical calculations both in terms of the underlying physics and the resulting rate coefficients. It is shown that the Drawin formula does not contain the essential physics behind direct excitation by H atom collisions, the important physical mechanism being quantum mechanical in character. Quantitatively, the Drawin formula compares poorly with the results of the available quantum mechanical calculations, usually significantly overestimating the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&
    • 

    corecore