The influence of inelastic hydrogen atom collisions on non-LTE spectral line
formation has been, and remains to be, a significant source of uncertainty for
stellar abundance analyses, due to the difficulty in obtaining accurate data
for low-energy atomic collisions either experimentally or theoretically. For
lack of a better alternative, the classical "Drawin formula" is often used.
Over recent decades, our understanding of these collisions has improved
markedly, predominantly through a number of detailed quantum mechanical
calculations. In this paper, the Drawin formula is compared with the quantum
mechanical calculations both in terms of the underlying physics and the
resulting rate coefficients. It is shown that the Drawin formula does not
contain the essential physics behind direct excitation by H atom collisions,
the important physical mechanism being quantum mechanical in character.
Quantitatively, the Drawin formula compares poorly with the results of the
available quantum mechanical calculations, usually significantly overestimating
the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&