63 research outputs found

    Structural basis for DNA strand separation by a hexameric replicative helicase

    Get PDF
    Hexameric helicases are processive DNA unwinding machines but how they engage with a replication fork during unwinding is unknown. Using electron microscopy and single particle analysis we determined structures of the intact hexameric helicase E1 from papillomavirus and two complexes of E1 bound to a DNA replication fork end-labelled with protein tags. By labelling a DNA replication fork with streptavidin (dsDNA end) and Fab (5′ ssDNA) we located the positions of these labels on the helicase surface, showing that at least 10 bp of dsDNA enter the E1 helicase via a side tunnel. In the currently accepted ‘steric exclusion’ model for dsDNA unwinding, the active 3′ ssDNA strand is pulled through a central tunnel of the helicase motor domain as the dsDNA strands are wedged apart outside the protein assembly. Our structural observations together with nuclease footprinting assays indicate otherwise: strand separation is taking place inside E1 in a chamber above the helicase domain and the 5′ passive ssDNA strands exits the assembly through a separate tunnel opposite to the dsDNA entry point. Our data therefore suggest an alternative to the current general model for DNA unwinding by hexameric helicases

    Health behaviors and their relationship with disease control in people attending genetic clinics with a family history of breast or colorectal cancer

    Get PDF
    The current work aimed to assess health behaviors, perceived risk and control over breast/colorectal cancer risk and views on lifestyle advice amongst attendees at cancer family history clinics. Participants attending the East of Scotland Genetics Service were invited to complete a questionnaire (demographic data, weight and height, health behaviors and psycho-social measures of risk and perceived control) and to participate in an in-depth interview. The questionnaire was completed by 237 (49%) of attendees, ranging from 18 to 77years (mean age 46 (±10) years). Reported smoking rates (11%) were modest, most (54%) had a BMI>25kg/m2, 55% had low levels of physical activity, 58% reported inappropriate alcohol intakes and 90% had fiber intakes indicative of a low plant diet. Regression analysis indicated that belief in health professional control was associated with higher, and belief in fatalism with poorer health behavior. Qualitative findings highlighted doubts about the link between lifestyle and cancer, and few were familiar with the current evidence. Whilst lifestyle advice was considered interesting in general there was little appetite for non-tailored guidance. In conclusion, current health behaviors are incongruent with cancer risk reduction guidance amongst patients who have actively sought advice on disease risk. There are some indications that lifestyle advice would be welcomed but endorsement requires a sensitive and flexible approach, and the acceptability of lifestyle interventions remains to be explored

    The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein

    Get PDF
    The exosome complex is a key component of the cellular RNA surveillance machinery and is required for normal 3′ end processing of many stable RNAs. Exosome activity requires additional factors such as the Ski or TRAMP complexes to activate the complex or facilitate substrate binding. Rrp47p promotes the catalytic activity of the exosome component Rrp6p, but its precise function is unknown. Here we show that recombinant Rrp47p is expressed as an apparently hexameric complex that specifically binds structured nucleic acids. Furthermore, pull-down assays demonstrated that Rrp47p interacts directly with the N-terminal region of Rrp6p that contains the functionally uncharacterized PMC2NT domain. Strains expressing a mutant form of Rrp6p lacking the N-terminal region failed to accumulate Rrp47p at normal levels, exhibited a slow growth phenotype characteristic of rrp47-Δ mutants and showed RNA processing defects consistent with loss of Rrp47p function. These findings suggest Rrp47p promotes Rrp6p activity by facilitating binding via the PMC2NT domain to structural elements within RNA. Notably, characterized Rrp6p substrates such as the 5.8S+30 species are predicted to contain helices at their 3′ termini, while others such as intergenic or antisense cryptic unstable transcripts could potentially form extensive double-stranded molecules with overlapping mRNAs

    Effect of electronic patient record use on mortality in End Stage Renal Disease, a model chronic disease: retrospective analysis of 9 years of prospectively collected data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In chronic disease, health information technology promises but has yet to demonstrate improved outcomes and decreased costs. The main aim of the study was to determine the effects on mortality and cost of an electronic patient record used in daily patient care in a model chronic disease, End Stage Renal Disease, treated by chronic maintenance hemodialysis. Dialysis treatment is highly regulated, and near uniform in treatment modalities and drugs used.</p> <p>Methods</p> <p>The particular electronic patient record, patient-centered and extensively coded, was used first in patient care in 3 dialysis units in New York, NY in 1998, 1999, and 2000. All data were stored "live"; none were archived. By December 31, 2006, the patients had been treated by maintenance hemodialysis for a total of 3924 years. A retrospective analysis was made using query tools embedded in the software. The United States Renal Data System dialysis population served as controls. In all there were 1790 patients, with many underlying primary diseases and multiple comorbid conditions affecting many organ systems. Year by year mortality, hospital admissions, and staffing were analyzed, and the data were compared with national data compiled by the United States Renal Data System.</p> <p>Results</p> <p>Analyzed by calendar year after electronic patient record implementation, mortality decreased strikingly. In years 3–9 mortality was lower than in years 1–2 by 23%, 48%, and 34% in the 3 units, and was 37%, 37%, and 35% less than that reported by the United States Renal Data System. Clinical staffing was 25% fewer per 100 patients than the national average, thereby lowering costs.</p> <p>Conclusion</p> <p>To our knowledge, this is the first demonstration that an electronic patient record, albeit of particular design, can have a favorable effect on outcomes and cost in chronic disease. That the population studied has many underlying diseases affecting all organ systems suggests that the electronic patient record design may enable application to many fields of medical practice.</p

    Computational Methods for Protein Identification from Mass Spectrometry Data

    Get PDF
    Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    The 28 November 2020 landslide, tsunami, and outburst flood – a hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada

    Get PDF
    We describe and model the evolution of a recent landslide, tsunami, outburst flood, and sediment plume in the southern Coast Mountains, British Columbia, Canada. On November 28, 2020, about 18 million m3 of rock descended 1,000 m from a steep valley wall and traveled across the toe of a glacier before entering a 0.6 km2 glacier lake and producing >100-m high run-up. Water overtopped the lake outlet and scoured a 10-km long channel before depositing debris on a 2-km2 fan below the lake outlet. Floodwater, organic debris, and fine sediment entered a fjord where it produced a 60+km long sediment plume and altered turbidity, water temperature, and water chemistry for weeks. The outburst flood destroyed forest and salmon spawning habitat. Physically based models of the landslide, tsunami, and flood provide real-time simulations of the event and can improve understanding of similar hazard cascades and the risk they pose
    corecore