21 research outputs found
Identification of tidal trapping of microplastics in a temperate salt marsh system using sea surface microlayer sampling
Microplastics are contaminants of increasing global environmental concern. Estuaries are a major transport pathway for land-derived plastics to the open ocean but are relatively understudied compared to coastal and open marine environments. The role of the âestuarine filterâ, by which the supply of sediments and contaminants to the sea is moderated by processes including vegetative trapping and particle flocculation, remains poorly defined for microplastics land to sea transfer. Here, we focus on the sea surface microlayer (SML) as a vector for microplastics, and use SML sampling to assess microplastic trapping in a temperate marsh system in Southampton Water, UK. The SML is known to concentrate microplastics relative to the underlying water and is the first part of rising tidal waters to traverse intertidal and upper tidal surfaces. Sampling a salt marsh creek at high temporal resolution allowed assessment of microplastics in-wash and outflow from the salt marsh, and its relationship with tidal state and bulk suspended sediment concentrations (SSC), over spring and neap tides. A statistically significant decrease in microplastics abundance from the flood tide to the ebb tide was found, and a weak positive relationship with SSC observed
Validation of a method to quantify microfibres present in aquatic surface microlayers
Many of the methods for microplastics quantification in the environment are criticised creating problems with data validity. Quantification of microplastics in the surface microlayer of aquatic environments using glass plate dipping holds promise as a simple field method, but its efficiency has yet to be validated. We tested a standard glass plate dipping method to assess recovery of four common polymer microfibres and two common natural fibres, under three different salinities (freshwater, brackish water, saltwater). Overall recovery rates were low (26.8â±â1.54%) but higher recoveries were observed under saltwater treatments (36.5â±â3.01%) than brackish water (24.5â±â1.92%) or freshwater (19.3â±â1.92%). The fibre types showed different recovery rates, with acrylic yielding significantly higher recovery rates (37.0â±â2.71%) than other fibres across treatments. No clear relationship between the density of the fibres and the recovery efficiency was seen. We suggest that, where this method is used for monitoring microplastics, the results will typically underestimate the total amount present, but that recovery is sufficiently consistent to allow comparison of differences between sampling locations. When comparing data across river-estuarine or similar transects salinity should be monitored to account for salinity-induced differences in sampling recovery
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
A História da Alimentação: balizas historiogråficas
Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă parte: a fome, o alimento e o domĂnio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂtico da historiografia brasileira sobre o tema
A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems
Microplastics are an increasingly important contaminant in the marine environment. Depending on their composition and degree of biofouling, many common microplastics are less dense than seawater and so tend to float at or near the ocean surface. As such, they may exhibit high concentrations in the sea surface microlayer (SML â the upper 1â1000âÎŒm of the ocean) relative to deeper water. This paper examines the accumulation of microplastics, in particular microfibres, in the SML in two contrasting estuarine systems â the Hamble estuary and the Beaulieu estuary, southern U.K., via a novel and rapid SML-selective sampling method using a dipped glass plate. Microplastic concentrations (for identified fibres, of 0.05 to 4.5âmm length) were highest in the SML-selective samples (with a mean concentration of 43â±â36 fibres/L), compared to <5 fibres/L for surface and sub-surface bulk water samples. Data collected show the usefulness of the dipped glass plate method as a rapid and inexpensive tool for sampling SML-associated microplastics in estuaries, and indicate that microplastics preferentially accumulate at the SML in estuarine conditions (providing a potential transfer mechanism for incorporation into upper intertidal sinks). Fibres are present (and readily sampled) in both developed and more pristine estuarine systems
Battling the known unknowns: A synoptic review of aquatic plastics research from Australia, the United Kingdom and China
Plastic pollution is a global environmental and human health issue, with plastics now ubiquitous in the environment and biota. Despite extensive international research, key knowledge gaps ("known unknowns") remain around ecosystem-scale and human health impacts of plastics in the environment, particularly in limnetic, coastal and marine systems. Here we review aquatic plastics research in three contrasting geographic and cultural settings, selected to present a gradient of heavily urbanised (and high population density) to less urbanised (and low population density) areas: China, the United Kingdom (UK), and Australia. Research from each country has varying environmental focus (for example, biota-focussed studies in Australia target various bird, fish, turtle and seal species, while UK and China-based studies focus on commercially important organisms such as bivalves, fish and decapods), and uses varying methods and reporting units (e.g. mean, median or range). This has resulted in aquatic plastics datasets that are hard to compare directly, supporting the need to converge on standardised sampling methods, and bioindicator species. While all the study nations show plastics contamination, often at high levels, datasets are variable and do not clearly demonstrate pollution gradients
Making complex measurements of meat composition fast: Application of rapid evaporative ionisation mass spectrometry to measuring meat quality and fraud
Increasing demands are being placed on meat producers to verify more about their product with regards to safety, quality and authenticity. There are many methods that can detect aspects of these parameters in meat, yet most are too slow to keep up with the demands of modern meat processing plants and supply chains. A new technology, Rapid Evaporative Ionisation Mass Spectrometry (REIMS), has the potential to bridge the gap between advanced laboratory measurements and technology that can screen for quality, safety and authenticity parameters in a single measurement. Analysis with REIMS generates a detailed mass spectral fingerprint representative of a meat sample without the need for sample processing. REIMS has successfully been used to detect species fraud, detect use of hormones in meat animals, monitor meat processing and to detect off flavours such as boar taint. The aim of this review is to summarize these and other applications to highlight the potential of REIMS for meat analysis. Sampling methods and important considerations for data analysis are discussed as well as limitations of the technology and remaining challenges for practical adoption