6 research outputs found

    Postoperative spinal infection mimicking systemic vasculitis with titanium-spinal implants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Secondary systemic vasculitis after posterior spinal fusion surgery is rare. It is usually related to over-reaction of immune-system, to genetic factors, toxicity, infection or metal allergies.</p> <p>Case Description</p> <p>A 14 year-old girl with a history of extended posterior spinal fusion due to idiopathic scoliosis presented to our department with diffuse erythema and nephritis (macroscopic hemuresis and proteinuria) 5 months post surgery. The surgical trauma had no signs of inflammation or infection. The blood markers ESR and CRP were increased. Skin tests were positive for nickel allergy, which is a content of titanium alloy. The patient received corticosteroids systematically (hydrocortisone 10 mg) for 6 months, leading to total recess of skin and systemic reaction. However, a palpable mass close to the surgical wound raised the suspicion of a late infection. The patient had a second surgery consisting of surgical debridement and one stage revision of posterior spinal instrumentation. Intraoperative cultures were positive to Staphylococcus aureus. Intravenous antibiotics were administered. The patient is now free of symptoms 24 months post revision surgery without any signs of recurrence of either vasculitis or infection.</p> <p>Literature Review</p> <p>Systemic vasculitis after spinal surgery is exceptionally rare. Causative factors are broad and sometimes controversial. In general, it is associated with allergy to metal ions. This is usually addressed with metal on metal total hip bearings. In spinal surgery, titanium implants are considered to be inert and only few reports have presented cases with systemic vasculitides. Therefore, other etiologies of immune over-reaction should always be considered, such as drug toxicity, infection, or genetic predisposition.</p> <p>Purposes and Clinical Relevance</p> <p>Our purpose was to highlight the difficulties during the diagnostic work-up for systemic vasculitis and management in cases of posterior spinal surgery.</p

    Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results

    Get PDF
    The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project "iCUPE - integrative and Comprehensive Understanding on Polar Environments" to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.Peer reviewe

    Frequency response of metal-oxide memristors

    No full text
    Memristors have been at the forefront of nanoelectronics research for the last decade, offering a valuable component to reconfigurable computing. Their attributes have been studied extensively along with applications that leverage their state-dependent programmability in a static fashion. However, practical applications of memristor-based AC circuits have been rather sparse, with only a few examples found in the literature where their use is emulated at higher frequencies. In this work, we study the behavior of metal-oxide memristors under an AC perturbation in a range of frequencies, from 10^3 to 10^7 Hz. Metal-oxide memristors are found to behave as RC low-pass filters and they present a variable cut-off frequency when their state is switched, thus providing a window of reconfigurability when used as filters. We further study this behaviour across distinct material systems and we show that the usable reconfigurability window of the devices can be tailored to encompass specific frequency ranges by amending the devices' capacitance. This study extends current knowledge on metal-oxide memristors by characterising their frequency dependent characteristics, providing useful insights for their use in reconfigurable AC circuits

    Dataset for: Frequency Response of Metal-Oxide Memristors

    No full text
    Dataset for peer-reviewed article titled &quot;Frequency Response of Metal-Oxide Memristors&quot; accepted in IEEE Transactions on Electron Devices Includes data used to produce the figures seen in this article.</span

    Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides

    No full text
    Ceria-based mixed oxides have been widely studied in catalysis due to their unique surface and redox properties, with implications in numerous energy- and environmental-related applications. In this regard, the rational design of ceria-based composites by means of advanced synthetic routes has gained particular attention. In the present work, ceria&ndash;titania composites were synthesized by four different methods (precipitation, hydrothermal in one and two steps, St&ouml;ber) and their effect on the physicochemical characteristics and the CO oxidation performance was investigated. A thorough characterization study, including N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and H2 temperature-programmed reduction (H2-TPR) was performed. Ceria&ndash;titania samples prepared by the St&ouml;ber method, exhibited the optimum CO oxidation performance, followed by samples prepared by the hydrothermal method in one step, whereas the precipitation method led to almost inactive oxides. CeO2/TiO2 samples synthesized by the St&ouml;ber method display a rod-like morphology of ceria nanoparticles with a uniform distribution of TiO2, leading to enhanced reducibility and oxygen storage capacity (OSC). A linear relationship was disclosed among the catalytic performance of the samples prepared by different methods and the abundance of reducible oxygen species
    corecore