23 research outputs found

    The pathophysiology of restricted repetitive behavior

    Get PDF
    Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism

    Greater Sage-Grouse and Severe Winter Conditions: Identifying Habitat for Conservation

    No full text
    Developing sustainable rangeland management strategies requires solution-driven research that addresses ecological issues within the context of regionally important socioeconomic concerns. A key sustainability issue in many regions of the world is conserving habitat that buffers animal populations from climatic variability, including seasonal deviation from long-term precipitation or temperature averages, and that can establish an ecological bottleneck by which the landscape-level availability of critical resources becomes limited. We integrated methods to collect landscape-level animal occurrence data during severe winter conditions with estimation and validation of a resource selection function, with the larger goal of developing spatially explicit guidance for rangeland habitat conservation. The investigation involved greater sage-grouse (Centrocercusurophasianus) that occupy a landscape that is undergoing human modification for development of energy resources. We refined spatial predictions by exploring how reductions in the availability of sagebrush (as a consequence of increasing snow depth) may affect patterns of predicted occurrence. Occurrence of sage-grouse reflected landscape-level selection for big sagebrush, taller shrubs, and favorable thermal conditions and avoidance of bare ground and anthropogenic features. Refinement of spatial predictions showed that important severe winter habitat was distributed patchily and was constrained in spatial extent (7-18% of the landscape). The mapping tools we developed offer spatially explicit guidance for planning human activity in ways that are compatible with sustaining habitat that functions disproportionately in population persistence relative to its spatial extent or frequency of use. Increasingly, place-based, quantitative investigations that aim to develop solutions to landscape sustainability issues will be needed to keep pace with human-modification of rangeland and uncertainty associated with global climate change and its effects on animal populations.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development

    No full text

    Virtual Criminal Responsibility

    No full text
    corecore