25 research outputs found

    Upregulated Glucose Metabolism Correlates Inversely with CD8(+) T-cell Infiltration and Survival in Squamous Cell Carcinoma

    Get PDF
    Antibodies that block T-cell–regulatory checkpoints have recently emerged as a transformative approach to cancer treatment. However, the clinical efficacy of checkpoint blockade depends upon inherent tumor immunogenicity, with variation in infiltrating T cells contributing to differences in objective response rates. Here, we sought to understand the molecular correlates of tumor-infiltrating T lymphocytes (TIL) in squamous cell carcinoma (SCC), using a systems biologic approach to integrate publicly available omics datasets with histopathologic features. We provide evidence that links TIL abundance and therapeutic outcome to the regulation of tumor glycolysis by EGFR and HIF, both of which are attractive molecular targets for use in combination with immunotherapeutics

    Influenza A Virus Induces an Immediate Cytotoxic Activity in All Major Subsets of Peripheral Blood Mononuclear Cells

    Get PDF
    A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells.Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood.Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer

    Influenza A Virus NS1 Protein Inhibits the NLRP3 Inflammasome

    Get PDF
    The inflammasome is a molecular platform that stimulates the activation of caspase-1 and the processing of pro-interleukin (IL)-1Ξ² and pro-IL-18 for secretion. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is activated by diverse molecules and pathogens, leading to the formation of the NLRP3 inflammasome. Recent studies showed that the NLRP3 inflammasome mediates innate immunity against influenza A virus (IAV) infection. In this study, we investigated the function of the IAV non-structural protein 1 (NS1) in the modulation of NLRP3 inflammasome. We found that NS1 proteins derived from both highly pathogenic and low pathogenic strains efficiently decreased secretion of IL-1Ξ² and IL-18 from THP-1 cells treated with LPS and ATP. NS1 overexpression significantly impaired the transcription of proinflammatory cytokines by inhibiting transactivation of the nuclear factor-ΞΊB (NF-ΞΊB), a major transcription activator. Furthermore, NS1 physically interacted with endogenous NLRP3 and activation of the NLRP3 inflammasome was abrogated in NS1-expressing THP-1 cells. These findings suggest that NS1 downregulates NLRP3 inflammasome activation by targeting NLRP3 as well as NF-ΞΊB, leading to a reduction in the levels of inflammatory cytokines as a viral immune evasion strategy

    Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37

    Get PDF
    The extensive world-wide morbidity and mortality caused by influenza A viruses highlights the need for new insights into the host immune response and novel treatment approaches. Cationic Host Defense Peptides (CHDP, also known as antimicrobial peptides), which include cathelicidins and defensins, are key components of the innate immune system that are upregulated during infection and inflammation. Cathelicidins have immunomodulatory and anti-viral effects, but their impact on influenza virus infection has not been previously assessed. We therefore evaluated the effect of cathelicidin peptides on disease caused by influenza A virus in mice. The human cathelicidin, LL-37, and the murine cathelicidin, mCRAMP, demonstrated significant anti-viral activity in vivo, reducing disease severity and viral replication in infected mice to a similar extent as the well-characterized influenza virus-specific antiviral drug zanamivir. In vitro and in vivo experiments suggested that the peptides may act directly on the influenza virion rather than via receptor-based mechanisms. Influenza virus-infected mice treated with LL-37 had lower concentrations of pro-inflammatory cytokines in the lung than did infected animals that had not been treated with cathelicidin peptides. These data suggest that treatment of influenza-infected individuals with cathelicidin-derived therapeutics, or modulation of endogenous cathelicidin production may provide significant protection against disease

    Targeting carcinoembryonic antigen with DNA vaccination: on-target adverse events link with immunological and clinical outcomes

    No full text
    PURPOSE: We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201 binding peptide CAP-1 from carcinoembryonic antigen (CEA605-613) linked to an immunostimulatory domain (DOM) from fragment C of tetanus toxin Experimental Design: Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (Arm-I) and 12 patients without radiological evidence of disease (Arm-II). Six intramuscular vaccinations of naked DNA (1mg/dose) were administered up to week 12. Clinical and immunological follow-up was to week 64 or clinical/radiological disease.RESULTS: DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared to 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8+ T-cells, respectively. CAP-1-specific T-cells were only detectable in the blood post-vaccination, but could also be identified in previously resected cancer tissue. The gastrointestinal adverse event diarrhea was reported by 48% of patients and linked to more frequent decreases in CEA (p<0.001) and improved global immunological responses (anti-DOM responses of greater magnitude (p<0.001), frequency (p=0.004) and duration) compared to patients without diarrhea. In advanced disease patients, decreases in CEA were associated with better overall survival (HR=0.14, p=0.017). CAP-1 peptide was detectable on MHC class I of normal bowel mucosa and primary colorectal cancer tissue by mass-spectrometry, offering a mechanistic explanation for diarrhea through CD8+ T-cell attack.CONCLUSIONS: Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody
    corecore