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Abstract

Antibodies that block T cell regulatory checkpoints have recently emerged as a
transformative approach to cancer treatment. However, the clinical efficacy of
checkpoint blockade depends upon inherent tumor immunogenicity, with variation in
infiltrating T cells contributing to differences in objective response rates. Here, we
sought to understand the molecular correlates of tumor-infiltrating T lymphocytes
(TIL) in squamous cell carcinoma (SCC), using a systems biologic approach to
integrate publicly available omics datasets with histopathological features. We
provide evidence that links TIL abundance and therapeutic outcome to the regulation
of tumor glycolysis by EGFR and HIF, both of which are attractive molecular targets

for use in combination with immunotherapeutics.
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Introduction

The unprecedented success of antibodies against CTLA-4 and PD-1/PD-L1 has
changed the landscape of cancer treatment (1). These mAb disrupt key molecular
regulators on T-cells and boost anti-tumor immunity through the blockade of
inhibitory signals (1). Unfortunately, only about a third of patients respond to
checkpoint blocking antibodies, and currently there is no reliable way of identifying

individuals most likely to benefit from immunotherapy.

Clinical trials of antibodies targeting the PD-1 pathway have demonstrated efficacy in
tumors characterized by high TIL infiltration and expression of PD-L1 (2, 3), arguing
that the clinical activity of checkpoint blockers is likely dependent on the presence of
pre-existing T-cell responses subject to dominant immunosuppression. Numerous
studies have reported that TIL frequency predicts for outcome (4), and we recently
showed that this is true also for HPV-associated head and neck squamous cell
carcinomas (HNSC) (5). Approximately 85% of HPV-positive HNSC contain a
significant T-cell infiltrate suggesting that this tumor type is particularly
immunologically visible. Unlike HPV-positive HNSC, most solid tumors contain
widely varying levels of TlLs and many immune escape mechanisms have been
postulated to contribute to this. These include lack of chemokine-mediated trafficking
(6), poor innate immune cell activation (7), and the presence of specific
immunosuppressive populations, such as Foxp3™ regulatory T-cells and myeloid-

derived suppressor cells (8, 9).

To provide an unbiased global view of the underlying molecular processes that
contribute to TIL frequency, we carried out a systems biological analysis of SCC data

in The Cancer Genome Atlas (TCGA), involving weighted gene coexpression
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network analysis (WGCNA) (10). Network analysis enables extraction of cell type-
specific information from whole tissue whilst providing a system-level view and giving
some insight into the communication between tumor, stroma and the host immune
response. The power of WGCNA in capturing a systems perspective is built upon its
underlying algorithm, which takes into account not only the correlation of two genes
with each other but also the degree of similarity between a pair of genes in their
correlation structure within the rest of the network (11). This strategy, applied to the
analysis of SCC, identified inverse correlates of TIL infiltration that are associated
with the natural evolution of cancer, encompassing genomic alterations and
dysregulated signaling pathways that culminate in stabilization of HIF and elevated

tumor glycolysis.
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Materials and Methods

WGCNA

Raw read counts from SCC datasets, originating from head and neck, esophageal,
cervical and lung tissues, were imported from TCGA into edgeR (12) and normalized
using the limma-voom algorithm (13). Outlier subjects were identified and excluded
using a sample network connectivity statistic described previously (14). WGCNA was
performed on these pre-processed datasets, using the WGCNA package in R (10,
15). Networks were graphically depicted by exporting topological overlap weights
into Gephi (http://gephi.org/) and the nodes clustered using ForceAtlas2. Functional
enrichment of gene coexpression modules was evaluated by gene set enrichment

analysis (GSEA) according to the pre-ranked protocol (http://www.broadinstitute.org/).

Survival analyses

The relationship between gene sets and patient survival outcomes was analyzed
using Cox PH models. Specifically, patients were dichotomized according to high
and low mean gene expression using cutoffs with a maximally selected log-rank
statistic (Maxstat R function). Kaplan-Meier survival curves derived from the Cox PH
model were then generated and differences between the two groups compared using

the R survival package.

Immunohistochemistry

Tissue microarrays were constructed using triplicate, randomly selected, paraffin-
embedded 1mm tumor cores (Aphelys Minicore 2, Mitogen). Automated
immunostaining (Ventana XT) was performed by an accredited clinical pathology
department using mAb against CD3, CD8 (Leica Microsystems), EGFR (Dako),

5
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GLUT-1 and HIF-1a (Abcam). TILs were quantified using a Zeiss AxioCam MRc5
microscope and Zeiss Axiovision software (v4-8-1-0). An average intra-tumoral TIL
score/high-power field was calculated across representative areas of each triplicate
core. We have shown previously in this patient cohort that randomly selected
triplicate TMA cores accurately reflect the heterogeneity of TIL infiltration within the

tumor, and that TMA cell counts significantly correlate with whole-section TIL levels

().

Cell culture and reagents

The TC-1 cell line, derived from transformed primary lung epithelial cells of C57BL/6
mice, and Phoenix Ecotropic cells were obtained from ATCC during 2011-2012, and
not independently authenticated. Both cell lines were cultured in RPMI1640
supplemented with 10% FCS, 1mM sodium pyruvate, 2mM L-glutamine, 100units/mL
penicillin, and 100ug/mL streptomycin (all Sigma-Aldrich). Cell lines were negative

for Mycoplasma spp.

Retroviral transduction

The full-length cDNA for murine GLUT-1 was amplified by RT-PCR and cloned into
pMSCV-puro (Clontech). Retroviral particles were generated in Phoenix Eco
packaging cells, and transductants were selected with 2ug/ml puromycin (Sigma-
Aldrich). To detect expression of GLUT-1, cells were fixed with methanol and then
stained sequentially with anti-GLUT-1 (SPM498; Abcam) and FITC-conjugated goat

anti-mouse IgG (Jackson ImmunoResearch Europe Ltd).

Analysis of cellular glycolysis
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Experiments were performed using a Seahorse Bioscience XF96 Extracellular Flux
Analyzer (North Billerica, MA, USA) in non-buffered DMEM (Sigma-Aldrich)
supplemented with 1mM sodium pyruvate, 2mM L-glutamine at pH 7.4. Cells were
seeded onto XF96 microplates on the day of the analysis, pre-coated with Cell-Tak
(BD Biosciences), at a concentration of 4x10* cells/well. Extracellular acidification
rates were measured over time, during which glucose (0.5mM final concentration)

and 2-DG (40mM final concentration) were injected.

Tumor therapy experiments

Female C57BI/6 mice aged 6-8 weeks were injected subcutaneously with 5x10° TC-
1 cells transduced with pMSCV-puro or pMSCV-GLUT-1-puro into the dorsal flank.
After 3 days, animals were subdivided into two further experimental groups,
immunized with empty-vector or an E7/E6-encoding DNA vaccine, and tumor growth
was followed over 3-weeks. Tumor volume was determined using the ellipsoidal
volume formula: 2 x length x width?. All animal experiments were performed

according to UK Home Office guidelines (license number PPL 30/3028).
Statistical analysis

To assess differential gene expression between patient groups, either the non-
parametric Wilcoxon signed-rank test or the Kruskal-Wallis test (for comparisons
involving more than 2 groups) was performed. To correlate module eigengenes with
binary traits, output p-values were —log10 transformed and given a sign according to
whether the average rank was higher in the second (positive) or first (negative)

group. These gene significance values were then correlated with the kKME measure.
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Results

The HNSC transcriptome is organized into consistent modules of coexpressed

genes, which correspond to distinct biological processes

To identify gene signatures whose expression positively correlated with low TIL
abundance, we applied WGCNA to a HNSC RNA-Seq dataset (16), publicly
available via TCGA (Supplementary Fig. S1 provides an overview of the approach
used in this study). The cohort analyzed consisted of tumors primarily from the oral
cavity, larynx and oropharynx, and included both HPV-positive (n=34) and HPV-
negative (n=212) cases. HPV-status was defined by mapping RNA-Seq reads to
HPV genomes (16). After data pre-processing and outlier removal, a signed similarity
matrix was built from pairwise correlations between gene expressions for the 4,000
most connected genes, ranked by the row sum of the adjacency matrix. Within this
correlation matrix, 12 modules of highly coexpressed genes were identified by
unsupervised hierarchical clustering on the basis of topological overlap (Fig. 1A). An
index.html file that allows the network to be viewed and searched in a browser can
be obtained from

https://www.dropbox.com/sh/67xiyzz2wwn49pg/AAB1slchHtILYfscKUqlfnMxa?dI=0.

To establish whether the gene coexpression modules reflect distinct biological
processes, Gene Ontology (GO) analyses were conducted in ToppGene
(https://toppgene.cchmc.org/). All but one of the 12 modules had significant
enrichment for at least one GO category, including processes linked to cancer such
as M6 ‘cell cycle’, M3 ‘extracellular matrix organization’ and pertinent to our study,
M1 ‘leukocyte activation’ and M8 ‘regulation of immune-system process’ (Table S1).

A full list of GO categories is provided in Supplementary Table S2.
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To determine if the network was reproducible across datasets, we evaluated whether
module density and connectivity patterns defined in the RNA-Seq data were
preserved in two independent HNSC cohorts (E-TABM-302,
www.ebi.ac.uk/arrayexpress;

http://bicinformatics.picr.man.ac.uk/vice/PublicProject.vice?pid=361) (17, 18). Of the
4,000 genes used to construct the aforementioned network, 3,557 (88.9%) were also
present in the array data. Using network module preservation statistics (19), all
modules except one (M5, corresponding to genes enriched for ‘regulation of RNA
metabolic process’) were strongly preserved in the HNSC microarray data (Table S1),
showing that gene coexpression modules are highly reproducible in HNSC. The lack
of strong preservation of M5 is most likely due to the absence of 148 mapped RNA-

Seq genes from M5 in the microarray probe sets, including the C2710rf62 hub gene.

Previously validated cluster analysis identified four subtypes of HNSC (basal,
mesenchymal, classical and atypical), which are consistent with canonical genomic
alterations (16, 20, 21). To capture the relationship between these transcriptional
classes and the coexpression modules, we overlaid the TCGA-HNSC network (Fig.
1B) with the correlation between each gene’s expression profile and the tumor
subtype. This integrative approach revealed regions of the network showing changes
in the HNSC transcriptome that correlated with a given subtype (Fig. 1C-F). Five
modules (M3, M8, M11, M12 and border of M1) formed a network sub region (‘meta-
module’) associated with mesenchymal tumors (Fig. 1C), which are defined by
expression of genes linked with EMT and/or containing fibroblasts with a strong
desmoplastic response (20). By contrast, the basal subtype, which typically exhibit
EGFR and MYC gene amplification (21) and include tumors with HRAS-CASP8 co-

mutation (16), centered around modules M2 and M4 (Fig. 1D). The remaining
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subtypes were associated with two further network regions, encompassing module
M9 (classical, Fig. 1E) and modules M6, M5 and M1 (atypical, Fig. 1F). The classical
subtype typically exhibits deletion of 3p and 9p, and amplification of 3q, whereas an
enrichment of HPV-positive tumors and a lack of EGFR amplification or deletion of

9p characterize the atypical subtype (16, 21).

Coexpression modules are significantly associated with HNSC biomarkers

To study the relationships among identified modules and clinical variables, we
summarized the expression profile of each module by its first principal component,
termed the module eigengene (ME) (10), and correlated MEs with clinical traits and
genetic alterations (Fig. 1G). This analysis highlighted modules associated with
known HNSC biomarkers, including histopathological grade and TIL frequency, as
well as HPV-status and EGFR gene amplification. Specifically, module M4 (GO:skin
development) inversely correlated with tumor grade (corME4= -0.81). Consistent with
this, examination of M4 revealed genes compatible with well-differentiated,
keratinizing tumors, such as transglutaminase-1, involucrin and keratin-6B. Previous
studies have reported an inverse correlation between EGFR expression and HPV-
positive oropharyngeal cancers (22). Similarly, the MEs of M4 and M2 (GO:wound
healing) were significantly associated with EGFR gene amplification (corME2=0.66;
corME4=0.66) and inversely correlated with HPV-positivity (corME2= -0.78; corME4=
-0.73). For M1, which had a strong reciprocal relationship with percent TILs
(corME1=0.62), we also observed significant although opposite correlations with
EGFR amplification (corME1= -0.55) and HPV-status (corME1=0.53), providing initial

evidence of an inverse relationship between TlLs and EGFR levels.

10
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To investigate the relationship between genes inside modules and clinical outcome,
we correlated gene expression with the deviance residual, a measure of observed
minus expected hazard from univariate Cox regression analysis (23). Positive and
negative values indicate shorter or longer than expected survival times, respectively.
The corDeviance values were then correlated with a measure of module
membership for each network gene (the KME measure) (10), defined by correlating
its expression profile with the ME. Membership of four of the 12 modules (M1, M5,
M8 and M11) was associated with good prognosis for overall survival
(Supplementary Fig. S2A and S2B), whereas expression of modules M2, M3, M7

and M12 were associated with an unfavorable outcome.

The leukocyte activation module is enriched for genes associated with CD8" T-

cells and overall survival

To characterize the cellular composition of the immune-related modules which
correlated with TIL frequency, we mapped genes with the strongest membership for
M1 (GO:leukocyte activation; kME1>0.80, 157 genes) (Fig. 2A) and M8
(GO:regulation of immune-system process; kKME8>0.80, 150 genes) (Fig. 2B) to the
coexpression atlas of the Immunological Genome Project (24). This analysis
indicated that M1 was highly enriched for genes associated with CD8" TCR-ap" T-
cells (Bonferonni adj.P=4.0x1O'47), including components of the CD3-TCR complex
(CD3D, CD3E, CD3G and CD247), chemokine receptors (CCR5, CXCR3) and cell
adhesion molecules (ITGAL, CD2, CD96). In contrast, for M8, coexpression atlas
mapping indicated enrichment for genes associated with cells of the myeloid lineage
(adj.P=9.8x10"*), including CD14, CD163, MSR1 and CSF1R. The close topological

proximity between M1 and M8 (Fig. 1B) suggests an interdependence and mutual

11
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regulatory relationship between these two cell populations. It was noteworthy, that
VSIG4, a strong negative regulator of T-cell proliferation and IL-2 production (25),
was among the myeloid signature genes that correlated with a shorter than expected
survival time (Fig. 2B). Thus, while increased expression of the CD8" T-cell signature
was predictive of survival in both univariate and multivariate analyses
(Supplementary Fig. S3A and C), no significant prognostic value was observed for

the myeloid lineage gene set (Fig. S3B and C).

The interferon-signaling pathway is associated with chronically activated CD8"

T-cells in HNSC

To further characterize the CD8" T-cell population, we tested whether the KME12 0.8
gene set was enriched in the transcriptome of memory, effector and exhausted CD8"
T-cells as defined by Wherry and colleagues in a model of acute versus chronic
infection (GSE41867) (26). GSEA revealed that the genes were significantly over-
represented in effector (day15) CD8" T-cells, responding to chronic (Fig. 3A) as
opposed to acute LCMV infection (Fig. 3B). In this late anti-LCMV effector response,
differentially expressed genes are exhaustion biased and reflect prolonged IFN-
signaling (27). To examine whether this relationship extends to TILs in HNSC, we
selected the nearest gene neighbors of STAT1, a key mediator of cellular responses
to type-1 and -2 IFN, using an empirical topological overlap threshold of 20.07 (179
genes). Pathways common analysis in ToppGene indicated that this gene list was
highly overrepresented in IFN-signaling genes (adj.P=5.8x1 0'46). Based on their kME,
principal component analysis (PCA) separated the STAT1 coexpressed genes into
two distinct clusters corresponding to membership of M10 (GO:type-1 IFN-signaling
pathway) or M1/M8 (GO:leukocyte activation/ regulation of immune-system process)

(Fig. 3C). Within the latter were components of the CD3-TCR complex and CD8A, as
12
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well as genes encoding CD8" T-cell effector molecules such as granzyme B,
perforin-1, Fas ligand and IFN-y. Additionally, 212 out of 751 M1 genes were
identified as IFN-responsive in the Interferome database (28), suggesting that M1
reflects ongoing (chronic) T-cell-mediated inflammation. This premise was supported
by the correlation of several inhibitory receptor genes, including TIGIT, PDCD1 (PD-
1), and LAG3, with STAT1 and CD8A expression (Fig. 3C). Unsupervised
hierarchical clustering of the nearest neighbor genes of STAT1 failed to differentiate
between HPV-status (Fig. 3D), indicating that CD8" T-cell responses were not
necessarily directed toward viral antigens (29). Nevertheless, expression of multiple
inhibitory receptor genes argues for an antigen-specific component to these
responses and suggests these phenotypically exhausted T-cells are providing a level

of tumor control, as proposed by Zehn and colleagues (30).

Expression of the leukocyte activation module inversely correlates with

dysregulated tumor metabolism

The primary aim of this analysis was to identify gene sets from the HNSC network
whose expression was associated with low TIL abundance. Towards this goal, we
next focused on modules that inversely correlated with M1, namely modules M2, M4
and M7 (Fig. 4A), which together comprised a meta-module associated with basal
tumors (Fig. 1D). Examination of genes with a strong membership of these modules
(kME=0.70) revealed GO categories enriched for wound healing, skin development
and translational termination (Table S1). To understand the potential molecular basis
by which these module genes regulate TIL frequency, we combined pathway
analysis based on genes that inversely correlated with M1 (kME1< -0.40) followed by
network visualization of enriched pathways using ToppCluster (31). This approach

linked EGFR triggering with mTOR signaling and aerobic glycolysis (Supplementary
13
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Fig. S4A). To further evaluate this association, GSEA was performed to characterize
an extended network gene list (15,749 genes), pre-ranked by the correlation
between the gene’s expression profile and ME1. In agreement with the analysis in
ToppCluster, GSEA showed that gene signatures of Myc activation, mTORC1
signaling and glycolysis were negatively correlated with membership of M1 (Fig. 4B-
D, see also Table S2). Among the core-enriched genes recurring in these pathways
were those coding for critical components of glucose and glutamine metabolism (Fig.
4E), such as facilitated glucose transporter, member 1 (GLUT-1; KME1= -0.57),
fructose-biphosphate aldolase A (kME1= -0.45) and the terminal enzyme of
glycolysis, pyruvate kinase (PKM2; KME1= -0.40). Consistent with the inverse
correlation with M1, increased expression of this gene set is associated with

decreased survival time (Supplementary Fig. S4B).

Expression of HIF1A, an important regulator of glycolysis (32), was significantly
higher in basal tumors compared to the rest of the transcriptional subtypes (Fig. 4F)
and inversely correlated with ME1 (r= -0.29). To examine the relationship between
HIF1A target genes and the four transcriptional subtypes of HNSC, we correlated
network gene expression and the first principal component of a hypoxia-associated
gene set (33). The hypoxia eigengene highlighted regions of the network centered
on module M2 (Fig. 4G), but also included elements of modules M3
(GO:extracellular matrix organization) and M10 (GO:type-1 IFN-signaling pathway).
Taken together, these findings suggested that the strong inverse correlation with
module M1 and basal subtype tumors could be due to increased glycolysis driven by

hypoxia and/or EGFR signaling.

Of the 246 HNSC samples subjected to WGCNA, 171 had paired reverse-phase

protein array (RPPA) data for 161 cancer-related proteins and phosphoproteins,
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including EGFR. We therefore correlated protein expression from matched samples
with the MEs. In accord with the RNA-Seq data, coexpression of proteins positively
associated with ME2, ME4 and ME?7, inversely correlated with ME1 (Fig. 5A-C). To
investigate the relationship between these proteins and HIF1A activity, we overlaid a
coexpression network constructed from the RPPA data with the correlation between
each protein’s expression profile and the M1 or hypoxia signature eigengene. This
approach revealed a cluster of proteins positively correlated with HIF1A-responsive
genes that inversely correlated with M1 (Fig. 5D). Among these proteins were

phosphorylated HER2 (Y1248) and EGFR (Y992, Y1068 and Y1173).

The inverse relationship between a leukocyte activation module and tumor

metabolism is a consistent feature of SCC

To explore how HIF1A activity and tumor metabolism affects the percentage of TILs
in other types of SCC, we used consensus WGCNA to identify conserved modules
across cervical (n=200), esophageal (n=83) and lung (n=362) RNA-Seq datasets.
Full details of the resulting network (Fig. 6A) are provided in Table S3. All 17
consensus modules, which by construction are present in all input datasets (15),
were also strongly preserved in the HNSC adjacency matrix (Table S3). Among the
consensus modules was cM6 (GO:leukocyte activation), which significantly
correlated with percent TILs (r=0.43, p=8.9x107'®) and for genes overrepresented in
effector CD8" TCR-aB* T-cells (adj.P=7.6x10"). Expression of modules cM1
(GO:translational  initiation), cM2 (GO:chromosome organization), cM7
(GO:xenobiotic metabolic process) and cM10 (GO:cell-cycle process) inversely
correlated with cM6 (Table S3 and Fig. 6B), which together comprised a meta-

module associated with HIF1A-responsive genes (Fig. 6C). The observed negative

15
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correlation of cM6 (GO:leukocyte activation) with HIF1A activity (cor cME6= -0.37,
p=1.5x10"") suggests that either the tumor tissue was hypoxic, or it featured
activated receptor tyrosine kinase and/or PI3K/Akt/mTOR pathways that stabilize
HIF1A (34, 35). Supporting the latter, GSEA showed that a hallmark gene signature
of mMTORC1 signaling was negatively associated with membership of cM6 (Fig. 6D).
Among genes that inversely correlated with cM6 were those coding for EGFR, HER2
(ERBBZ2), Akt and components of mMTORCH1, including Raptor and mLST8 (Fig. 6E).
The mTORC1 complex is a central regulator of cellular metabolism and promotes
glycolysis by inducing PKM2 under normoxic conditions (36). Furthermore,
expression of DEPTOR, a negative regulator of the MTOR signaling pathway,
inversely correlated with the hypoxia eigengene whilst positively correlating with cM6
(Fig. 6E). Similarly, PTEN, which antagonizes PI3K function and consequently
activation of Akt and PDK1 by dephosphorylating PIP3;, was among genes that

positively correlated with cM6.

These findings are compatible with dysregulated signaling in SCC promoting HIF1A
stabilization, avid glucose uptake via GLUT-1 and elevated glycolysis. This may in
turn lead to competition for glucose creating a T-cell immunosuppressive tumor
microenvironment (37). Alternatively, lactate, the end product of glycolysis may
impair T-cell expansion (38). In this regard, monocarboxylate transporter type 1
(SLC16A1) was among HIF1A-responsive genes that inversely correlated with the

leukocyte activation ME (Fig. 6E and 4E).

High GLUT-1 expression inversely correlates with TIL infiltration in HNSC and

delays tumor regression in a pre-clinical model of T-cell-based therapy

16
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To confirm the association of low TIL abundance with GLUT-1 expression, tumor
tissue from 308 HNSC patients (HPV-negative=187; HPV-positive=121) were
analyzed by immunohistochemistry. Expression of GLUT-1 inversely correlated with
TIL levels (r= -0.42, p<0.001), as assessed on H&E-stained sections, and inversely
correlated with numbers of CD3" T-cells (r= -0.43, p<0.001) and CD8" T-cells (r= -
0.40, p<0.001). Similarly, expression of HIF-1a inversely correlated with TILs (r= -

0.49, p<0.001).

Of the 308 patients included in the study, 108 were known to have died from HNSC.
We have previously shown that TIL density predicts for survival in this cohort of
patients (Fig. 7A) (5). There was a highly significant difference between the Kaplan-
Meier curves for mortality according to GLUT-1 expression (Log rank p<0.001, Fig.
7B). The hazard ratios (HR) for high GLUT-1 expression indicated a 3.0-fold
increase in HNSC mortality compared with low expression (HR=2.96[1.81-4.82],
p=0.006). However, these associations were non-significant after multivariate
analysis adjusted for major HNSC risk factors (age, stage, HPV-status and grade)
and high GLUT-1 (HR=1.79[0.92-3.28], p=0.197). Consistent with the WGCNA, a
significant correlation was present between GLUT-1 and EGFR protein expression

(r=0.21, p<0.001).

To validate these observations, we examined expression of EGFR, HIF-1a, GLUT-1
and TIL in 34 cases of lung SCC (93 TMA cores) and found a similar significant
(p<0.001) inverse correlation between CD8" TIL with EGFR (r= -0.34), HIF-1a (r= -
0.54) and GLUT-1 (r= -0.43). EGFR expression positively correlated with GLUT-1

(r=0.50).
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To examine whether high GLUT-1 expression impacts on immune evasion by tumors,
we engineered the syngeneic TC-1 tumor model (39), which expresses HPV16 E6
and E7, to overexpress murine GLUT-1 (Fig. 7C). Initially, we measured the TC-1
cells extracellular acidification rate (ECAR) as a surrogate marker of glycolysis. A
base-line measure of ECAR was obtained in glucose-free media; we then added
glucose to assess glycolysis, and finally inhibited glucose metabolism by adding 2-
deoxyglucose (2-DG). The injection of glucose caused an increase in ECAR in both
control-transduced and GLUT-1-transduced TC-1 cells, with a significantly higher
increase in TC-1 cells overexpressing GLUT-1 (p<0.0001, Fig. 7D). The subsequent
injection of 2-DG decreased ECAR to basal levels. Thus, TC-1 cells transduced with

GLUT-1 had a significantly higher glycolytic rate.

To explore whether increased glucose metabolism affects the therapeutic potential of
tumor-specific T-cells, we challenged syngeneic mice with control-transduced or
GLUT-1-transduced TC-1 cells, and on day 3, immunized the recipients with empty-
vector or a protective HPV16 E7/E6 fusion gene vaccine. Immunization with this
DNA vaccine elicits an effector CD8" T-cell response largely focused on the
immunodominant H-2D"-binding E7 epitope RAHYNIVTF (Supplementary Fig. S5).
Tumors grew progressively in empty-vector immunized mice at comparable rates
(Fig. 7E and 7F). However, whereas immunization with E7/E6 rapidly prevented
tumor progression in mice challenged with control-transduced TC-1 cells (10/10 mice
tumor-free by day 17, Fig. 7G), the overexpression of GLUT-1 significantly delayed

tumor regression (4/10 mice tumor-free by day 21, Fig. 7H).
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Discussion

In this study, we employed a systems biologic approach to integrate HNSC omics
data with histopathological features in order to identify molecular correlates of TIL
frequency. Our analysis identified a leukocyte activation module associated with
effector CD8" T-cells and favorable prognosis, whose expression inversely
correlates with a HIF metabolic transcriptome. Here, we have demonstrated for the
first time, to our knowledge that tumors engineered to have a higher glycolytic rate
are resistant to T-cell-based immunotherapy. Our data provide evidence that link TIL
abundance and therapeutic outcome to the regulation of aerobic glycolysis by EGFR
and HIF1A, which are attractive targets for the development of more effective

immunotherapeutic strategies.

Network analysis of the HNSC transcriptome identified two modules correlated with
TIL frequency, M1 and M8, which are significantly enriched for genes associated
with CD8" TCR-aB" T-cells and myeloid cells, respectively. The eigengenes for these
two modules are strongly correlated (r=0.81). Despite their close topological
proximity, the unsupervised assignment of differentially co-expressed genes into
separate modules by WGCNA, reflecting their distinct underlying cell populations
and activities, exemplifies the power of this approach to extract cell type-specific
information from whole tissue and to elucidate regulatory circuits. Module M1
contains a large number of genes induced by IFN-y, including C//ITA and genes of
the MHC class Il-dependent antigen processing pathway, indicating that IFN-y is
upregulated and biologically available. Furthermore, within M1, genes co-expressed
with STAT1 such as CD8A, IFNG, PRF1 and GZMB, are consistent with previous

reports identifying CD8" T-cell signatures prognostic for survival (4). Perhaps
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paradoxically, this favorable T-cell signature is associated with expression of multiple
inhibitory receptor genes, including TIGIT, PD-1 and LAG3, which are thought to be

markers of terminally differentiated ‘exhausted’ T-cells (40).

The correlation of higher TIL frequency with favorable outcome is compatible with
tumor antigen-specific T-cells providing an immune surveillance role after clinical
intervention. Indeed, the therapeutic effects achieved by blocking PD-1 signaling
strongly supports this premise. However, the prognostic significance of TILs may
also reflect a distinct underlying tumor biology (41). Of the four previously validated
gene expression subtypes of HNSC (20, 21), the presence of the T-cell activation
signature positively correlates with atypical and mesenchymal transcriptional classes,
suggesting that tumors belonging to these subtypes are more capable of eliciting a
productive T-cell response. For the atypical subtype, which is characterized by an
enrichment of HPV-positive tumors, this capacity may reflect activation of a non-
tolerized, HPV-specific polyclonal CD8" T-cell repertoire (42). The increased
immunogenicity of mesenchymal tumors may reflect their distinct mutational
landscape (16), with dissimilarities in oncogenic drivers between subsets potentially
influencing the magnitude of neoantigenic T-cell stimulation. Conversely, variances
in oncogenic signaling may alter the ability of the host to mount an anti-tumor
immune response (16). Accordingly, we observed a strong inverse correlation with
module M1 and basal-subtype tumors, which are associated with EGFR and MYC
gene amplification, and high levels of HIF signaling. As a consequence, genes
encoding glucose and amino acid transporters, glycolytic enzymes, lactate
dehydrogenase and pyruvate dehydrogenase kinase are strongly upregulated in
basal as compared with mesenchymal tumors. These proteins act in concert to

increase glucose metabolism and glucose dependency, such that in poorly
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vascularized tumors, heightened glycolytic activity can lead to glucose depletion and
accumulation of lactate (43). Activated T-cells use similar metabolic programs to
support anabolic growth, proliferation and effector function (44), which implies tumor-
infiltrating T-cells, may have to compete for metabolic fuels. Glucose deprivation or
inhibition of glycolysis by 2-DG impairs cell cycle progression, production of IFN-y,
and granule-mediated cytotoxicity of CD8" T-cells (45-47). More recently, it has been
shown that glucose deprivation leads to a reduction of the glycolysis metabolite
phosphoenolpyruvate, which is required to sustain TCR-mediated Ca?*-NFAT
signaling and anti-tumor T-cell effector functions by repressing sarco/ER Ca*'-
ATPase activity [48]. Glucose limitation can also lead to increased expression of PD-
1 (37), suggesting that competition for metabolites may precede T-cell dysfunction.
In this regard, blockade of PD-1 has been recently shown to boost anti-tumor CD8"
T-cell responses by augmenting their glycolytic capacity through increased mTOR

signaling and glucose flux (49).

Our data suggest that targeting the EGFR pathway might offer a means of
selectively modulating tumor metabolism, as reported in lung adenocarcinoma cells
(50), without disrupting T-cell effector function. Trials, which combine standard
treatment of anti-EGFR (Cetuximab) and chemotherapy with anti-PD-1
(Pembrolizumab), are already ongoing in metastatic or recurrent HNSC (e.g.,
NCT02358031). In future work, it will therefore be of interest to evaluate whether

molecular predictors of outcome can be confirmed in interventional trials.
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Figure 1. Gene coexpression and eigengene relationships with HNSC
transcriptional subclasses and clinico-pathological features. (A) Hierarchical
clustering dendrogram for all 4000 genes used in the analysis. The color row
underneath the dendrogram shows the module assignment. (B) Network graph
where each node represents a gene labelled by color according to the module
assignment in (A). Distance between nodes is represented by the topological overlap
connectivity measure. (C-F) Network graphs where each gene is labelled by color
according to correlation with the indicated HNSC tumor subtype. Red and blue colors
show positive and negative correlation, respectively. (G) Heat map of the correlation
between expression of each ME and the clinical trait listed. Abbreviations: ECS

(extracapsular spread), LVI (lymphovascular invasion), PNI (perinuclear invasion).

Figure 2. Analysis of immune-related module gene expression and eigengene
relationships with overall survival. Scatterplots between module membership
(kME) and a prognostic gene significance measure (corDeviance) for genes with the

strongest membership (kME=0.8) for M1 (A) and M8 (B).

Figure 3. The IFN-signaling pathway is associated with chronically activated
CD8" T-cells in HNSC. (A and B) GSEA of microarray data from purified CD8" T-
cells at day 15 of chronic (A) or acute (B) LCMV infection, using a gene set
representing the strongest members of M1 (kME120.8). (C) PCA of the nearest
neighbor genes of STAT1. Genes are colored according to membership of M1
(turquoise), M8 (pink) and M10 (purple). The PCA plot is overlaid with the
corresponding variables factor graph, where the angle between two arrows
represents the correlation of the respective MEs. Arrows directly opposite are
negatively correlated. (D) Unsupervised hierarchical clustering based on the nearest

neighbor genes of STAT1. Each row represents a gene, each column a sample from
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HPV-positive (green) or HPV-negative (blue) patients, and each cell the expression
level of a gene in a sample using a color scale where red indicates overexpression

and blue underexpression relative to mean expression in each row.

Figure 4. Expression of the leukocyte activation module inversely correlates
with tumor glycolysis. (A) Heat map of the correlation between expression of each
ME; cells show correlation coefficient (top) and corresponding p-value (bottom). (B-D)
GSEA of HNSC genes pre-ranked by membership of M1 (high-to-low) with given
MSigDB Hallmark gene sets. A negative NES indicates gene set enrichment at the
bottom of the ranked list. (E) Bar graph of a glucose metabolism gene set (x-axis)
with correlation between the gene’s expression profile and membership of the
module indicated. (F) HIF1A log, expression. Each data point represents a tumor
sample classified according to the transcriptional subtype indicated. (G) Network
gene correlation with a hypoxia signature eigengene. Red and blue colors show

positive and negative correlation, respectively.

Figure 5. Proteins whose expression inversely correlate with M1 are
associated with a hypoxia signature. (A-C) Scatterplots of correlations between
expressions for the 161 cancer-related proteins and phosphoproteins in the HNSC
RPPA data set with ME1 (x-axes) versus ME2 (A), ME4 (B) or ME7 (C). (D) Network
graph where each node represents a protein labelled by color according to the
correlation between its expression profile and ME1. Red and blue colors show
positive and negative ME1 correlation, respectively. Node size reflects the strength

of correlation with the hypoxia signature eigengene (larger size=stronger correlation).

Figure 6. Expression of a consensus leukocyte activation module inversely

correlates with tumor glycolysis in SCC. Consensus SCC network graph where
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nodes are labelled by color according to WGCNA module assignment (A) or
correlation between the genes expression profile and cME6 (B) or a hypoxia
signature eigengene (C). (D) GSEA of expressed genes (n=14,639) in SCC pre-
ranked by membership of cM6 (high-to-low) with a mTORC1 hallmark gene set. (E)
Scatterplot of a glucose metabolism gene set with correlation between the gene’s
expression profile and membership of the leukocyte activation module (x-axis) or a
hypoxia-associated signature eigengene (y-axis). Meta-values were calculated by
combining the Z scores of correlations from each dataset divided by the square root
of the number of sets. Label size reflects the strength of correlation with cMEG6

(larger size=stronger negative correlation).

Figure 7. High GLUT-1 expression is predictive of poor outcome in HNSC and
renders TC-1 tumors resistant to vaccine-induced T-cell-based therapy. (A and
B) Kaplan-Meier curves for HNSC mortality according to abundance of TILs (A) or
GLUT-1 expression (B). HNSC-specific survival time was measured from date of
diagnosis until date of death from HNSC or date last seen alive. For those that died
of other causes, survival from HNSC was censored at the time of death. (C)
Histogram plot of GLUT-1 expression by control-transduced (green) or GLUT-1-
transduced (purple) TC-1 cells. (D) Analysis of ECAR by control-transduced or
GLUT-1-transduced TC-1 cells upon addition of glucose and 2-DG. (E-H) Tumor
therapy experiments where syngeneic mice were injected subcutaneously with either
control-transduced (E and G) or GLUT-1-transduced (F and H) TC-1 cells, and then
3-days later vaccinated with empty vector (E and F) or a DNA vaccine encoding

E6/E7 (G and H). The data are representative of two independent experiments.
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