266 research outputs found

    Proton recoil polarization in exclusive (e,e'pp) reactions

    Full text link
    The general formalism of nucleon recoil polarization in the (e,eNN{\vec e},e'{\vec N}N) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16^{16}O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the 16^{16}O(e,epp{\vec e},e'{\vec p}p)14^{14}C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.Comment: 12 pages, 6 figure

    Investigation of the Exclusive 3He(e,e'pp)n Reaction

    Get PDF
    Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c, data were taken at transferred energies omega ranging from 170 to 290 MeV. At omega=220 MeV, measurements were performed at three q values (305, 375, and 445 MeV/c). The results are presented as a function of the neutron momentum in the final-state, as a function of the energy and momentum transfer, and as a function of the relative momentum of the two-proton system. The data at neutron momenta below 100 MeV/c, obtained for two values of the momentum transfer at omega=220 MeV, are well described by the results of continuum-Faddeev calculations. These calculations indicate that the cross section in this domain is dominated by direct two-proton emission induced by a one-body hadronic current. Cross section distributions determined as a function of the relative momentum of the two protons are fairly well reproduced by continuum-Faddeev calculations based on various realistic nucleon-nucleon potential models. At higher neutron momentum and at higher energy transfer, deviations between data and calculations are observed that may be due to contributions of isobar currents.Comment: 14 pages, 1 table, 17 figure

    16O(e,e'p) reaction at large missing energy

    Get PDF
    We investigate the origin of the strength at large missing energies in electron-induced proton knockout reactions. For that purpose the reaction 16O(e,e'p) was studied at a central value omega=210 MeV of the energy transfer, and two values of the momentum transfer: q=300, 400 MeV/c, corresponding to the "dip region". Differential cross sections were determined in a large range of missing energy (Em=0-140 MeV) and proton emission angle (gamma_pq =0-110 deg), and compared to predictions of a model that includes nucleon-nucleon short-range correlations and two-body currents. It is observed that, in the kinematic domain covered by this experiment, the largest contribution to the cross section stems from two-body currents, while short-range correlations contribute a significant fractionComment: submitted to Physics Letters

    Discrete element modelling of flexible fibre packing

    Get PDF
    This paper presents Discrete Element Model simulations of packing of non-cohesive flexible fibres in a cylindrical vessel. No interstitial fluid effects are modelled. Each fibre-particle is modelled as a series of connected sphero-cylinders. In an initial study each particle is modelled a single rigid sphero-cylinder; the method has been used before but this study considers higher aspect ratios up to 30. This posed some modelling challenges in terms of stability which were overcome by imposing limits on the particle angular velocity. The results show very good agreement with experimental data in the literature and more detailed in-house experiments for packing volume fraction. Model results on particle orientation are also shown. The model is developed to include flexibility by connecting sphero-cylinders as sub-elements to describe a particle. Some basic tests are shown for the joint model that connects the sub-elements. The simulation results show similar trends to the rigid particle results with increased packing fraction. The effects of number of sub-elements, joint properties and contact friction are examined. The model has the potential for predicting packing of fibrous particles and fibre bundles relevant to the preparation of preforms for the production of discontinuously-reinforced polymer, ceramic and metallic matrix composites

    Fundamentals of interface phenomena in advanced bulk nanoscale materials

    Get PDF
    The review is devoted to a study of interface phenomena influencing advanced properties of nanoscale materials processed by means of severe plastic deformation, high-energy ball milling and their combinations. Interface phenomena include processes of interface defect structure relaxation from a highly nonequilibrium state to an equilibrium condition, grain boundary phase transformations and enhanced grain boundary and triple junction diffusivity. On the basis of an experimental investigation, a theoretical description of the key interfacial phenomena controlling the functional properties of advanced bulk nanoscale materials has been conducted. An interface defect structure investigation has been performed by TEM, high-resolution x-ray diffraction, atomic simulation and modeling. The problem of a transition from highly non-equilibrium state to an equilibrium one, which seems to be responsible for low thermostability of nanoscale materials, was studied. Also enhanced grain boundary diffusivity is addressed. Structure recovery and dislocation emission from grain boundaries in nanocrystalline materials have been investigated by analytical methods and modeling

    The 3^3He(e, e'd)p Reaction in qω\omega-constant Kinematics

    Full text link
    The cross section for the 3^3He(e, e'd)p reaction has been measured as a function of the missing momentum pmp_m in qω\omega -constant kinematics at beam energies of 370 and 576 MeV for values of the three-momentum transfer qq of 412, 504 and 604 \mevc. The L(+TT), T and LT structure functions have been separated for qq = 412 and 504 \mevc. The data are compared to three-body Faddeev calculations, including meson-exchange currents (MEC), and to calculations based on a covariant diagrammatic expansion. The influence of final-state interactions and meson-exchange currents is discussed. The pmp_m-dependence of the data is reasonably well described by all calculations. However, the most advanced Faddeev calculations, which employ the AV18 nucleon-nucleon interaction and include MEC, overestimate the measured cross sections, especially the longitudinal part, and at the larger values of qq. The diagrammatic approach gives a fair description of the cross section, but under(over)estimates the longitudinal (transverse) structure function.Comment: 17 pages, 7 figure

    One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca

    Get PDF
    The one body density matrix, momentum distribution, natural orbits and quasi hole states of 16O and 40Ca are analyzed in the framework of the correlated basis function theory using state dependent correlations with central and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by means of the variational principle and the realistic Argonne v8' two-nucleon and Urbana IX three-nucleon interactions. The correlated momentum distributions are in good agreement with the available variational Monte Carlo results and show the well known enhancement at large momentum values with respect to the independent particle model. Diagonalization of the density matrix provides the natural orbits and their occupation numbers. Correlations deplete the occupation number of the first natural orbitals by more than 10%. The first following ones result instead occupied by a few percent. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent (~1-3%) and an additional ~8-12% depletion is provided by tensor correlations. It is confirmed that short range correlations do not explain the spectroscopic factors extracted from (e,e'p) experiments. 2h-1p perturbative corrections in the correlated basis are expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.

    First measurements of the ^16O(e,e'pn)^14N reaction

    Get PDF
    This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution was sufficient to distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data.Comment: 10 pages, 11 figures, 2 tables, Accepted for publication in EPJ
    corecore