76 research outputs found

    One-Dimensional Turbulence Simulations for Reactive Flows in Open and Closed Systems

    Get PDF
    The One-Dimensional Turbulence (ODT) model is applied to reactive flows in open and closed systems represented by a lifted jet flame in a vitiated coflow, and a constant volume autoignition configuration, respectively. ODT is a one-dimensional model for turbulent flow simulations, which uses a stochastic formulation to represent the effects of turbulent advection. Diffusion and reaction effects along the ODT domain are considered by deterministic evolution equations. This work is an effort to verify the applicability and efficiency of the model for open and closed systems. In the open system case, ODT results are compared against experimental results of a lifted methane/air jet flame detailed in the work of Cabra et al. (2005). In the closed system case, a periodic, constant volume domain is used to investigate the sensitivity of the ignition evolution to initial temperature and composition inhomogeneities of a lean n-heptane/air mixture. In the latter context, ODT results are compared to DNS results from Luong et al. (2015). The results for the jet and constant volume configuration show a reasonable match with the experimental and DNS data, considering the reduced order of the model and the underlying assumptions for each case. At the jet configuration, a dependence of the flame evolution on the turbulence intensity parameter can be seen. For the closed system, initial temperature and composition inhomogeneities allow a mitigation of the undesirable rapid pressure rise due to locally different ignition delay times

    Formalin-fixed and paraffin-embedded tissues of chickens are useful for retrospective studies on pathology of H5N1 Highly Pathogenic Avian Influenza Virus (HPAI) outbreaks in Nigeria

    Get PDF
    In a retrospective study, histopathology and immunohistochemistry (IHC) were performed on formalin-fixed paraffin embedded (FFPE) archival tissues from chickens obtained during outbreaks of highly pathogenic avian influenza (HPAI) H5N1 that occurred in Nigeria in 2006 and 2007. Ten samples as representative of 10 outbreaks were selected, and following the detection of HPAI viral antigen in different chicken tissues using IHC, RNA was extracted from each sample and molecular analysis was performed using real-time reverse transcription-polymerase chain reaction (rRT-PCR) targeting matrix protein. Seven rRT-PCR positive samples were then subjected to conventional and rRT-PCR assays for the amplification of hemagglutinin (HA) gene. Four of them were further characterized by sequence analysis of a short HA2-part of the H5 gene. Along the 154 nucleotides sequenced, differences at 4 positions were detected in one sample. One of these mutations led to an amino acid exchange at position 544 (Ala>Thr) whereas the others were silent. The study suggests the potential application for retrospective IHC and PCR analysis of FFPE tissues from chickens involved in the AI outbreaks for pathologic studies and providing short fragment sequences which may help in the characterization of viral strains and tracing the outbreaks. This is important as archived poultry tissues can be re-examined for possibility of earlier introduction of the virus.Keywords: Avian influenza; FFPE; H5N1; Nigeria; Immunohistochemistry; real-time RT-PC

    Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany

    Get PDF
    AbstractDecisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government.The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5milliontons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials.In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification

    Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    Get PDF
    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 ”l at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections

    Avian influenza virus risk assessment in falconry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds.</p> <p>Findings</p> <p>During 2 hunting seasons (2006/2007 and 2007/2008) falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54) in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74) and 3.8% of ducks (n = 53) using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13.</p> <p>Conclusion</p> <p>Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey.</p

    Rapid Detection and Subtyping of Human Influenza A Viruses and Reassortants by Pyrosequencing

    Get PDF
    Background: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. Methodology/Principal Findings: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. Conclusions/Significance: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is mor
    • 

    corecore