322 research outputs found

    Control of electron spin and orbital resonance in quantum dots through spin-orbit interactions

    Get PDF
    Influence of resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments it is shown that spin and orbital resonance can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of Rabi frequency to the dot configuration (orientation of the dot and a static magnetic field) as a result of the anisotropy of the spin-orbit interactions. The so called easy passage configuration is shown to be particularly suitable for magnetic manipulation of spin qubits, ensuring long spin relaxation time and protecting the spin qubit from electric field disturbances accompanying on-chip manipulations.Comment: 11 pages, 5 figures; v2: introduction and conclusions broadened, moderate structure and content change

    Orbital and spin relaxation in single and coupled quantum dots

    Get PDF
    Phonon-induced orbital and spin relaxation rates of single electron states in lateral single and double quantum dots are obtained numerically for realistic materials parameters. The rates are calculated as a function of magnetic field and interdot coupling, at various field and quantum dot orientations. It is found that orbital relaxation is due to deformation potential phonons at low magnetic fields, while piezoelectric phonons dominate the relaxation at high fields. Spin relaxation, which is dominated by piezoelectric phonons, in single quantum dots is highly anisotropic due to the interplay of the Bychkov-Rashba and Dresselhaus spin-orbit couplings. Orbital relaxation in double dots varies strongly with the interdot coupling due to the cyclotron effects on the tunneling energy. Spin relaxation in double dots has an additional anisotropy due to anisotropic spin hot spots which otherwise cause giant enhancement of the rate at useful magnetic fields and interdot couplings. Conditions for the absence of the spin hot spots in in-plane magnetic fields (easy passages) and perpendicular magnetic fields (weak passages) are formulated analytically for different growth directions of the underlying heterostructure. It is shown that easy passages disappear (spin hot spots reappear) if the double dot system loses symmetry by an xy-like perturbation.Comment: 13 pages, 9 figure

    Spin properties of single electron states in coupled quantum dots

    Get PDF
    Spin properties of single electron states in laterally coupled quantum dots in the presence of a perpendicular magnetic field are studied by exact numerical diagonalization. Dresselhaus (linear and cubic) and Bychkov-Rashba spin-orbit couplings are included in a realistic model of confined dots based on GaAs. Group theoretical classification of quantum states with and without spin orbit coupling is provided. Spin-orbit effects on the g-factor are rather weak. It is shown that the frequency of coherent oscillations (tunneling amplitude) in coupled dots is largely unaffected by spin-orbit effects due to symmetry requirements. The leading contributions to the frequency involves the cubic term of the Dresselhaus coupling. Spin-orbit coupling in the presence of magnetic field leads to a spin-dependent tunneling amplitude, and thus to the possibility of spin to charge conversion, namely spatial separation of spin by coherent oscillations in a uniform magnetic field. It is also shown that spin hot spots exist in coupled GaAs dots already at moderate magnetic fields, and that spin hot spots at zero magnetic field are due to the cubic Dresselhaus term only.Comment: 16 pages, 12 figure

    May car washing represent a risk for Legionella infection?

    Get PDF
    Background. Legionella is a ubiquitous Gram-negative bacterium naturally found in aquatic environments. It can pose a health problem when it grows and spreads in man-made water systems. Legionella pneumophila is the most common cause of Legionnaires\u2019 disease nowadays, a community-acquired pneumonia with pulmonary symptoms and chest radiography no different from any other form of infectious pneumonia. Legionella monitoring is important for public health reasons, including the identification of unusual environmental sources of Legionella. Methods. We report two cases of Legionnaires\u2019 disease associated with two different car wash installations in the province of Vicenza, in the Veneto region, northeastern Italy. Patients were not employees of the car wash installations, but users of the service. In both cases, Legionella antigen was detected in urine using the Alere BinaxNOW\uae Legionella Urinary Antigen, and Legionella antibodies were detected in serum using SERION ELISA classic Legionella pneumophila 1-7 IgG and IgM. Water samples were also analyzed as part of the surveillance program for Legionella prevention and control in compliance with the Italian guidelines. Results. Both patients had clinical symptoms and chest radiography compatible with pneumonia, and only one of them had diabetes as a risk factor. Legionella urinary antigen and serological test on serum samples were positive for Legionella in both patients, even if much slighter in the case A due to the retrospective serological investigation performed a year later the episode and after the second clinical case occurred in the same district. The environmental investigations highlighted two different car wash plants as potential source of infection. A certified company using shock hyperchlorination was asked to disinfect the two plants and, subsequently, control samples resulted negative for Legionella pneumophila. Conclusions. Any water source producing aerosols should be considered at risk for the transmission of Legionella bacteria, including car wash installations frequently used by a large number of customers and where poor maintenance probably creates favorable conditions for Legionella overgrowth and spreading. Additional research is needed to ascertain optimal strategies for Legionella monitoring and control, but environmental surveillance, paying careful attention to possible unconventional sources, should remain an important component of any Legionnaires\u2019 disease prevention program. Additionally, all available diagnostic methods would be recommended for the confirmation of all cases even in the event of non-serogroup 1 Legionella pneumophila infection, probably underestimated at this time

    Description and Status of the North Alabama Lightning Mapping Array

    Get PDF
    The North Alabama Lightning Mapping Array (LMA) is a network LMA detectors that detects and maps lightning using VHF radiation (TV Channel 5) in a region centered about Huntsville, Alabama that includes North Alabama, Central Tennessee and parts of Georgia and Mississippi. The North Alabama LMA has been in operation since late 2001, and has been providing real time data to regional National Weather Service (NSF) Weather Forecast Offices (WFOs) since mid 2003 through the NASA Short-term Prediction Research and Transition (SPoRT) center. Data from this network (as well as other from other LMA systems) are now being used to create proxy Geostationary Lightning Mapper (GLM) data sets for GOES-R risk reduction and algorithm development activities. In addition, since spring 2009 data are provided to the Storm Prediction Center in support of Hazardous Weather Testbed and GOES-R Proving Ground activities during the Spring Program. Description, status and plans will be discussed

    Quantum states and linear response in dc and electromagnetic fields for charge current and spin polarization of electrons at Bi/Si interface with giant spin-orbit coupling

    Full text link
    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons and Grioni [Phys. Rev. B {\bf 82}, 085440 (2010)] describing quantum states at Bi/Si(111) interface with giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis for charge current and induced spin caused by dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response both for current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.Comment: 10 pages, 9 figure

    Lightning Jump Algorithm Development for the GOESR Geostationary Lightning Mapper

    Get PDF
    Current work on the lightning jump algorithm to be used in GOESR Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semiobjective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a realtime framework at NSSL. This system includes fully automated tracking by radar alone, realtime LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (5080% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the realtime jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE)
    • …
    corecore