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Orbital and spin relaxation in single and coupled quantum dots

Peter Stano and Jaroslav Fabian
Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany

Phonon-induced orbital and spin relaxation rates of single electron states in lateral single and
double quantum dots are obtained numerically for realistic materials parameters. The rates are
calculated as a function of magnetic field and interdot coupling, at various field and quantum dot
orientations. It is found that orbital relaxation is due to deformation potential phonons at low
magnetic fields, while piezoelectric phonons dominate the relaxation at high fields. Spin relaxation,
which is dominated by piezoelectric phonons, in single quantum dots is highly anisotropic due to
the interplay of the Bychkov-Rashba and Dresselhaus spin-orbit couplings. Orbital relaxation in
double dots varies strongly with the interdot coupling due to the cyclotron effects on the tunneling
energy. Spin relaxation in double dots has an additional anisotropy due to anisotropic spin hot
spots which otherwise cause giant enhancement of the rate at useful magnetic fields and interdot
couplings. Conditions for the absence of the spin hot spots in in-plane magnetic fields (easy passages)
and perpendicular magnetic fields (weak passages) are formulated analytically for different growth
directions of the underlying heterostructure. It is shown that easy passages disappear (spin hot
spots reappear) if the double dot system loses symmetry by an xy-like perturbation.

PACS numbers: 72.25.Rb, 73.21.La, 71.70.Ej, 03.67.Lx

I. INTRODUCTION

The spin degree of freedom in solid state systems has
a much longer memory than orbital degrees. This fact is
exploited in spin electronics1 as well as in spin quantum
computing, most notably in quantum dots2 in which elec-
tron spin provides a qubit for controlled single and two-
qubit operations2,3. The performance of the spin qubits
is ultimately limited by spin relaxation and decoherence.
At present we believe that general principles and mecha-
nisms of spin relaxation and decoherence in quantum dots
are known, while it remains to develop particular models,
understand realizations of the mechanisms as well as to
perform realistic calculations, in special cases of interest.

There appear two principal mechanisms of spin relax-
ation in quantum dots. At low magnetic fields (say,
tens of gauss), the relaxation proceeds via hyperfine
coupling of the electron spin with the lattice or im-
purity nuclei.4,5,6 On the other hand, at higher fields
(Teslas) the relaxation is due to phonon-induced spin-
flip transitions7,8,9,10,11,12,13,14,15,16,17,18,19. These are al-
lowed due to the presence of spin-orbit coupling. Vari-
ants of the phonon-induced spin relaxation has been
proposed, such as ripple coupling,20,21 important in
very small quantum dots (10 nm), or fluctuations in
spin-orbit parameters, important when underlying het-
erostructure inhomogeneities22 are present. A possi-
ble direct spin-phonon coupling7,8,23, due to spin-orbit
modulated electron-phonon coupling, have been found
of less importance. Phonons can also change the spin
precession rate and cause spin decoherence.24 As was
shown in Ref. 25 phonon-induced spin relaxation and
decoherence proceed on similar time scales. Another
source of the decoherence is the fluctuation of the gate
potential.26 The experimental results on spin relaxation
in single27,28,29,30,31,32 and double dots33,34, as well as
on orbital relaxation35,36, support the above theoretical

picture.

Here we present a systematic and comprehensive in-
vestigation of phonon-induced orbital and spin relax-
ation in lateral single and double quantum dots, defined
in a GaAs heterostructure. We consider the most rel-
evant electron-phonon couplings—the deformation po-
tential and piezoelectric acoustic phonons, and realistic
spin-orbit couplings—the Bychkov-Rashba and the lin-
ear and cubic Dresselhaus ones. We calculate the relax-
ation rates in the presence of in-plane and perpendicu-
lar magnetic fields. Our results are numerically exact
within the Fermi’s Golden rule approximating the tran-
sition rate. We have already reported on new anisotropy
effects of spin relaxation in double dots, in Ref. 37. The
anisotropy arises due to anisotropic spin hot spots, the
parameter (magnetic field and interdot coupling) regions
in which a spectral crossing between a spin up and a
spin down state is lifted (producing an anti-crossing) by
spin-orbit coupling38,39. At these points the spin and or-
bital relaxation rates are equal. In single quantum dots
spin hot spots were found in Ref. 40, while in vertical
few-electron quantum dots in Ref. 41. In lateral double
dots spin hot spots appear at useful magnetic fields (1
T) and interdot couplings (0.1 meV), due to the cross-
ing of the lowest orbital antisymmetric (with respect to
the quantum dot axis) state and the Zeeman split sym-
metric state of the opposite spin.42 This occurs when the
tunneling energy equals the Zeeman energy. Manipula-
tion of interdot coupling in the presence of a magnetic
field thus in general results in a short spin lifetime. For-
tunately, we have found37 that the spin hot spots are
absent for certain arrangements of the double dots’ axis
and the orientation of the in-plane magnetic field. In
particular, if the dots are oriented along a diagonal [on
a (001) heterostructure plane], and the magnetic field is
perpendicular, the spin hot spots are absent (due to sym-
metry reasons) for any values of spin-orbit parameters.
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We have proposed such a geometry, which corresponds to
what we call “easy passage”37, for quantum information
processing.

The particular results of our Letter, Ref. 37, are not
repeated here. Instead we focus on providing a unified
description, both analytical and numerical, of orbital and
spin relaxation rates. We give analytical formulas de-
scribing the trends, with respect to magnetic fields and
confinement energies of the dots, of the rates. We present
the numerically calculated orbital relaxation rates and
demonstrate that they are due to the deformation poten-
tial phonons at low magnetic fields and due to piezoelec-
tric phonons at high fields (at zero magnetic field orbital
relaxation in a biased double dot was studied in Ref. 13,
using a two-level model).

As for spin relaxation, we demonstrate here the differ-
ent origin of spin hot spots in single and double quantum
dots. While in single dots spin hot spots appear due to
the Bychkov-Rashba coupling40, in double dots both the
Bychkov-Rashba and Dresselhaus couplings contribute.
The reasons is the different symmetry of the underly-
ing states in single and double dots42. Furthermore, we
classify here the conditions for the absence (or narrow-
ing) of spin hot spots in double dots defined in quan-
tum wells grown in different crystallographic directions,
in which the Dresselhaus spin-orbit coupling takes on dif-
ferent functional forms. We also explore the orbital ef-
fects of a perpendicular magnetic field component—the
main effect is the absence of easy passages; only a nar-
row “weak passages” appear instead with inhibited but
finite spin hot spots. Finally, we show that easy passages
are also absent in general asymmetric double dots, im-
plying stringent symmetry requirements on coupled dots
for spin information processing.

The paper is organized as follows. In Sec. II we de-
scribe our model of single and double quantum dots, de-
rive relevant perturbations responsible for the spin relax-
ation, and write useful expressions for orbital and spin
relaxation rates. In Sec. III we describe the orbital and
spin relaxation relaxation in single dots for the case of
in-plane and perpendicular magnetic fields. Section IV
gives a similar description for double dots. Finally, in
Sec. V we give conclusions.

II. MODEL

A. Hamiltonian

We study a two-dimensional electron gas confined in a
(001) plane, spanned along x and y directions, of a zinc-
blende semiconductor heterostructure. An additional
confinement into lateral quantum dots is given by top
gates. The single electron Hamiltonian, in the presence
of magnetic field and spin-orbit coupling, is

H = T + V +HZ +HBR +HD +HD3. (1)

Here T = P2/2m is the kinetic energy with the effective
electron massm and kinematic momentum P = p+eA =
−i~∇ + eA; e is the proton charge and A is the vector
potential of the magnetic field B. If the magnetic field is
perpendicular to the plane, B⊥ = (0, 0, B⊥), we choose
the vector potential as A⊥ = (B⊥/2)(−y, x, 0). If the
field is in the plane, lying under the angle γ relative to
x̂, B‖ = B‖(cos γ, sinγ, 0). The orbital effects of the in-
plane field are inhibited—only the Zeeman interaction is
taken into account in this case. The position vector is
denoted as R = (x, y, z) = (r, z). We will also find useful
to introduce the kinematic angular momentum L = R×
P.

The quantum dot geometry is defined by the confining
potential

V(r) =
1

2
mω2

0min{(r− d)2, (r + d)2}. (2)

The distance between the minima of the potential is 2d,
which is further called the interdot distance. The an-
gle between d and x̂ is denoted as δ. If d=0, the po-
tential is parabolic, V = (1/2)mω2

0r
2, representing the

single dot case with the confinement energy E0 = ~ω0

and the confinement length l0 = (~/mω0)
1/2, setting

the energy and length scale, respectively. Both the con-
fining potential and the vector potential of the perpen-
dicular magnetic field define the effective length lB =
l0(1 +B2

⊥e
2l40/4~

2)−1/4.
The Zeeman energy is given by HZ = (g/2)µBσ.B,

where g is the conduction band g factor, µB is the Bohr
magneton, and σ are the Pauli matrices. To shorten
the notation, we will use a renormalized magneton µ =
(g/2)µB.

Spin-orbit coupling gives three important terms in con-
fined systems.1 The Bychkov-Rashba Hamiltonian,43,44

HBR = α̃BR (σxPy − σyPx) /~, (3)

appears if the confinement is not symmetric in the growth
direction (here ẑ). The strength α̃BR of the interac-
tion can be tuned by modulating the asymmetry by top
gates. Due to the lack of spatial inversion symmetry in
zinc-blende semiconductors, the spin-orbit interaction of
conduction electrons takes the form of the Dresselhaus
Hamiltonian,45 which gives two terms, one linear and one
cubic in momentum:46

HD = γc〈P 2
z /~

2〉 (−σxPx + σyPy) /~, (4)

HD3 = (γc/2)
(

σxPxP
2
y − σyPyP

2
x

)

/~3 +H.c., (5)

where γc is a material parameter. The angular brack-
ets in HD denote quantum averaging in the z direction–
the magnitude of HD depends on the z confinement
strength. We express the strengths of the linear spin-
orbit interactions in length units by lBR = ~

2/2mα̃BR

and lD = ~
4/2mγc〈P 2

z 〉.
In our numerical computations we use bulk GaAs ma-

terials parameters: m = 0.067me, g = −0.44, and
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γc = 27.5 eVÅ3. For the coupling of the linear Dres-
selhaus terms we choose γc〈P 2

z 〉/~2 = 4.5 meVÅ, corre-
sponding to the 11 nm thick ground state of the trian-
gular confining potential.47 To agree with experimental
data (see Ref. 37) we choose for α̃BR a value of 3.3
meVÅ, which is in line of experimental observations48,49

and corresponds to the carrier density of 5×1011 cm−2

in Ref. 50. These values correspond to length units of
lBR = 1.8 µm, and lD = 1.3 µm.

For a confinement length of 32 nm (used in a re-
cent experiment29) and a perpendicular magnetic field
of 1 T, one gets the following typical magnitudes for the
strengths of the contributions to the Hamiltonian given
by (1): 1.1 meV for the confinement energy E0, 13 µeV
for the Zeeman splitting, and 14, 10, and 0.8 µeV for
the linear Dresselhaus, Bychkov-Rashba, and the cubic
Dresselhaus terms, respectively. The spin-orbit interac-
tions are small perturbations, with strengths comparable
to the Zeeman splitting. This leads to the many orders
of magnitude difference between the orbital and spin re-
laxation rates.

We numerically diagonalize the full Hamiltonian (1)
(see Ref. 42 for further details) and compute the orbital
and spin relaxation rates using Fermi’s Golden Rule. We
also present analytical calculations for various limiting
cases.

B. Perturbative eigenfunctions

Our numerical results can be qualitatively understood
from considering the lowest order of the perturbative so-
lution of the Hamiltonian (1). We assume that spin-
orbit couplings are small perturbations and that one can
solve the Schrödinger equation for Hamiltonian H0 =
T + V + HZ . First, we transform10 the Hamiltonian to
remove the linear spin-orbit terms

H → eHop

He−Hop

= H0 +H1, (6)

where

H1 = HD3 +H
(2)
D +H

(2)
BR +HZ

D +HZ
BR. (7)

The transformation is defined by operator Hop = Hop
BR +

Hop
D ,

Hop = (i/2lBR)(yσx − xσy) − (i/2lD)(xσx − yσy), (8)

Keeping only terms up to the second order in the linear
spin-orbit and Zeeman couplings and the lowest order
term in the cubic Dresselhaus coupling, the new terms of
the transformed Hamiltonian are

H
(2)
D = [HD, H

op
D ]/2 = −(~2/4ml2D)(1 − Lzσz), (9)

H
(2)
BR = [HBR, H

op
BR]/2 = −(~2/4ml2BR)(1 + Lzσz),(10)

HZ
D = [HZ , H

op
D ] = −(µB⊥/lD)(xσy + yσx) +

+(µB‖/lD)σz(x sin γ + y cos γ), (11)

HZ
BR = [HZ , H

op
BR] = (µB⊥/lBR)(yσy + xσx) −

−(µB‖/lBR)σz(x cos γ + y sin γ). (12)

While H
(2)
D and H

(2)
BR are transformed linear spin-orbit

terms in the absence of magnetic field, the terms HZ
D

and HZ
BR describe the mixing of the spin-orbit and Zee-

man interaction in the unitary transformation given by
Hop; these terms are essential for understanding spin re-
laxation anisotropy.

We denote the eigenfunctions and eigenenergies of H0

as Ψ and ǫ. We use the standard perturbation theory
for non-degenerate states and then remove the unitary
transformation to get the approximate eigenfunctions, Ψ,
of the original Hamiltonian (1):

Ψi = e−Hop



Ψi +
∑

j 6=i

〈Ψj |H1|Ψi〉
ǫi − ǫj

Ψj



 . (13)

For degenerate states, which normally lead to spin hot
spots with strongly enhanced spin relaxation, we use
Löwdin’s perturbation theory. If two eigenstates, Ψi and
Ψj, of H0 are degenerate, the corresponding perturbed
states are

Ψi = e−Hop



βiiΨi + βijΨj +
∑

k 6=i,j

〈Ψk|H1|Ψi〉
ǫi − ǫk

Ψk



 .

(14)
The coefficients β are the solutions of the appropriate
secular equation. If ǫi − ǫj ≫ (H1)ij , then βii ∼ 1
and βij ≪ 1 – Eq. (13) is recovered. The other case,
when ǫi − ǫj . (H1)ij , describes anti-crossing—spin hot
spots.38,39 In the limiting case, when ǫi = ǫj, we get
βii = 1/

√
2 = βij .

The analytical solution of H0 for the single dot case is
known. The eigenstates are the Fock-Darwin51,52 states,
Ψn,l,σ, where n is the principal quantum number, l is
the orbital quantum number, and σ is the spin. For the
double dot case the analytical solution is not known, but
for our double dot potential the eigenfunctions can be
approximated by a properly symmetrized linear combi-
nation of Fock-Darwin functions centered at the potential
minima.42

C. Phonon-induced orbital and spin relaxation

rates

By orbital relaxation we mean the transition from the
first excited orbital state to all lower lying states. By
spin relaxation we mean the transition from the upper
Zeeman split orbital ground state to all lower lying states
(except at high magnetic fields, there is only one lower
Zeeman split orbital ground state). The spin of a state Ψ
is quantized in the direction of the magnetic field. How-
ever, due to the spin orbit interactions, the perturbed
states Ψ have no common spin quantization axes. We
call a state to be spin up (down) if the mean value of
the spin in the direction of the magnetic field is positive
(negative). Since the spin-orbit interactions are a small
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perturbation, these mean values are close to ±1/2, except
at anti-crossings.

Given the initial and final states for the transition we
compute the rates by Fermi’s Golden rule, where the per-
turbation is the electron–phonon interaction. The rele-
vant terms for our GaAs system comprise deformation
(df) and piezoelectric acoustic (pz) phonons, described
by Hamiltonian terms53

Hdf = σe

∑

K

√

~K

2ρV cl
(bK,l + b†−K,l)e

iK.R, (15)

Hpz = −ieh14

∑

K,λ

√

~

2ρV cλ
Mλ(bK,λ + b†−K,λ)eiK.R.(16)

Here the three–dimensional phonon wave vector is de-
noted by K = (kx, ky, kz) = (k, kz), and λ = l, t1, or
t2 is the phonon’s polarization (one longitudinal and two
transversal); ρ is the material density (5.3 × 103kg m−3,
for GaAs), V is the volume of the crystal, cλ is the
sound velocity, (cl = 5.3 × 103 m/s, ct = 2.5 × 103 m/s),

b†
K,λ, bK,λ are the creation and annihilation phonon op-

erators, σe is the deformation potential (7.0 eV), and
eh14 is the piezoelectric constant (1.4 × 109 eV/m). Fi-
nally, the geometrical factors Mλ are equal to 2(kxkye

λ
z +

kzkxe
λ
y +kykze

λ
x)/K2, where eλ are unit polarization vec-

tors.
Consider first the deformation potential, Eq. 15, in

which only longitudinal (λ = l) phonons take part. Using
Fermi’s Golden rule, a relaxation (orbital or spin) rate
can be written as

Γdf = [n(E) + 1]γdfE
2

∫

d2k|F (k)|2|f(kl
z)|2/kl

z(17)

= [n(E) + 1]γdf(E
2/lB)χdf(El). (18)

Here E is the energy difference between the initial and
final states, n(E) = [exp(E/kBT ) − 1]−1 is the oc-
cupation number of the phonon state with energy E
at temperature T (further we use zero temperature),
γdf = σ2

e/8π
2ρc4l ~

3 is the strength of the deformation
electron–phonon interaction [8.3×1010 s−1 nm /(meV)2],

F (k) =
∫

d2rΨ
†

ie
ik.rΨf is the xy–overlap, and f(kz) =

∫

dz ψ†
0e

ikzzψ0 is the z–overlap, contribution of which can
be neglected, f(kz) ≈ 1, if the energy difference E is
much smaller than the excitation energy in the z confine-
ment potential. The z component of the wave vector is
given by kλ

z =
√

E2
λ/l

2
B − k2, where the dimensionless pa-

rameter Eλ = ElB/~cλ is the ratio of the effective length,
lB, and the the wavelength of the emitted phonon. Fi-
nally, χdf(El) is an integral of the xy–overlap F (k). Since
the typical linear dimension of a wave function is the ef-
fective length lB, we express it as

χdf(El) =

∫

kz≥0

d2(klB)
|F (k)|2

√

E2
l − k2l2B

. (19)

We compute the relaxation rate Γdf numerically using
formula (17). However, we can gain physical insight in

Eλ ≫ 1 Eλ ≪ 1

Γdf A2γdfE
2/lBEl A2γdfE

2E3
l /lB

Γpz

l
A2γpz/lBE5

l A2γpzE3
l /lB

Γpz
t A2γpzc

2
l /lBE3

t c2
t A2γpzE3

t c2
l /lBc2

t

relative Γdf ≫ Γpz
t ≫ Γpz

l
Γpz

t ≈ (cl/ct)
5Γpz

l
≫ Γdf

TABLE I: The relaxation rates and the relative strength of
the contributions due to deformation (λ = l), piezoelectric
longitudinal (λ = l), and piezoelectric transversal (λ = t)
phonons. The two limiting cases are defined by the ratio, Eλ,
of the wavelength of the emitted phonon of polarization λ,
and the effective length lB. The initial and final states are
encoded into the coefficient A, which needs to be evaluated
for specific cases.

two important limits. First, if the wavelength of relevant
phonons is smaller than the size of the dots, El ≫ 1,
the square root can be taken out from the integral and
χdf ∼ 1/El. Physically, this means that the energy to be
absorbed by the phonon is large and almost whole is in
the z component of the phonon wave vector (phonon is
emitted almost perpendicularly to the xy–plane). Sec-
ond, in the opposite limit of El ≪ 1, the integration
is only in the vicinity of point k = 0. Because of
the orthogonality of the eigenfunctions the overlap in-
tegral vanishes, F (k → 0) → 0, and the lowest order
gives |F |2 ∼ (klB)2. This leads to the dependence of
χdf(El) ∼ E3

l .

Analogous expression holds for the piezoelectric in-
teraction which contains contributions from longitudinal
and transverse phonons. The relaxation rate can be writ-
ten as

Γpz = [n(E) + 1]γpz(1/lB)χpz(E), (20)

with γpz = (eh14)
2/8π2ρc2l ~ = 4 × 1010 s−1 (note

the different unit from γdf) nm and χpz(E) =
∑

λ(c2l /c
2
λ)

∫

d2(klB)|Mλ|2|F (k)|2/kλ
z lB. The geometri-

cal factors, Mλ, have no influence on the limiting expres-
sions for χpz in the limit E ≪ 1, where χpz(E) ∼ E3. If
E ≫ 1, the fact that Mλ contains factors (kx/K)2 and
kx/K leads to limits E−5 and E−3 for the longitudinal
and transverse phonons, respectively. Table I summa-
rizes the limiting expressions.

In addition to the deformation and piezoelectric
phonons, there are additional electron-phonon spin de-
pendent interactions which can lead to spin relaxation.
However, a direct spin-phonon coupling (spin-orbit mod-
ulated electron-phonon interaction7,8) is believed to give
a negligible contribution. In very small (say, 10-20 nm,
which is not our case) quantum dots spin relaxation due
to the so called ripple mechanism20 can be as important
as the spin-orbit mechanism and should be considered.
Finally, at low magnetic fields the relaxation is believed
to be dominated by the hyperfine interaction between the
electron and nuclei of the host material.4,5
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III. SINGLE DOTS

In the single dot case we identify the unperturbed lower
and upper Zeeman split orbital ground, and excited or-
bital states as Ψ0,0,↑, Ψ0,0,↓, and Ψ0,−1,↑, respectively.42

The negative value of the g factor energetically favors
spin up rather that spin down states. Having opposite
spin, the perturbed ground and spin states will have a
nonzero overlap due to those perturbations in the trans-
formed Hamiltonian (6) which do not commute with the
Zeeman term. Therefore the xy–overlap F (k) will be
proportional to the strengths of the corresponding per-
turbations. In the case of the spin relaxation, the coef-
ficient A in Tab. I will be approximately equal to these
strengths divided by a typical energy difference between
the corresponding coupled states, as can be seen from
Eq. (13). On the other hand, since the excited orbital
and ground states have the same spin, the coefficient A
for the orbital relaxation is of order 1.

This consideration leads to the following approxima-
tions which we use when estimating the rate analytically.
For orbital relaxation

H1 ≈ 0. (21)

For spin relaxation, in analytical calculations we neglect
the cubic Dresselhaus term. If the magnetic field is in-
plane, Eqs. (9) and (10) do not couple the ground or
the spin state, which have zero orbital momenta, with
any other state. If the magnetic field is perpendicular,
Eqs. (9) and (10) commute with the Zeeman term, again
giving no contribution to the spin relaxation. For the
spin relaxation we therefore approximate

H1 ≈ HZ
D +HZ

BR. (22)

A. In-plane magnetic field

We have earlier37 compared our calculation of the
spin relaxation in an in-plane magnetic field with the
experiment.29 We have found that the experiment can be
explained with a reasonable set of spin-orbit parameters
which we use also in the present article. Using Eqs. (13),
(20), and (22) we get for the dominant contribution to the
spin relaxation due to piezoelectric transversal phonons
in the low magnetic field limit

Γpz
t ≈ 256πγpzc

2
lm

2

105~7c5t
l80|µB‖|5L−2

SO, (23)

where

L−2
SO =

l2D + l2BR − 2 sin(2γ)lDlBR

l2Dl
2
BR

(24)

describes the effective (anisotropic) spin-orbit length.
The angular dependence of the spin relaxation rate, ex-
pressing the C2v symmetry of the heterostructure, allows

to find the ratio of the Dresselhaus and Bychkov-Rashba
couplings:

min{lD/lBR, lBR/lD} = 2/(
√
ra + 1) − 1, (25)

where ra is the ratio of the rates at γ = 45◦ and γ =
135◦. A possible measured angular dependence with the
minimum at γ = 45◦ would be a convincing indication
that the admixture due to spin-orbit is the mechanism
of the relaxation. A more general angular dependence,
allowing for out-of-plane magnetic fields, was derived in
Ref. 25.

The reason for the angular dependence of Γpz
t follows

from Eq. (22), which for an in-plane field is

H1 = −µB‖σz [x(
cos γ

lBR
− sin γ

lD
)+y(

sinγ

lBR
− cos γ

lD
)]. (26)

Due to the selection rules for the Fock-Darwin states, x
and y do not mix in coupling of the states. The coeffi-
cient A2 is then proportional to the sum of the squared
couplings from Eq. (26), at x and y. Taking E0 as a typi-
cal energy difference E of the coupled states and using lB
for a natural length unit, we get A2 ≈ |µB‖lB/E0|2L−2

SO.
Noting that lB = l0 for in-plane field and using the low
energy limit for Γpz

t from Tab. I, one recovers Eq. (23)
up to a numerical factor. The numerical result has been
presented in Ref. 37 (Fig. 1) and is not repeated here.

B. Perpendicular magnetic field

1. Orbital relaxation rates

In the case of a perpendicular magnetic field, the nu-
merically calculated orbital and spin relaxation rates in a
single dot are shown in Fig. 1. The orbital relaxation rate
is of the order of 109 s−1. The spin-orbit contributions to
the rate (not shown in the figure) are of the order of 106

s−1 for the linear spin orbit terms and 105 s−1 for the cu-
bic Dresselhaus term, validating the approximation Eq.
(21). The energy difference of the orbital and the ground
state is E = ~

2/2ml2B − (~e/2m)B⊥. At low magnetic
fields the high E limit applies and the deformation poten-
tial dominates the orbital relaxation rate. The results are
listed in Tab. II. The values at zero magnetic field, up to
a numerical factor, follow from Tab. I, if one uses A = 1
and the low magnetic field limits, where E ≈ ~

2/ml20,
and lB ≈ l0. The dependence of the rates on the energy
difference of the states, shown in Tab. I, is enough to
understand the different dependence of the deformation
and piezoelectric contributions to the orbital relaxation
rate at low magnetic fields shown in Figs. 1 and 2. The
deformation contribution drops with increasing both the
magnetic field and confinement lengths, while the piezo-
electric contribution increases with increase of these two
parameters.

For fields lower that 1 T the dominant deformation
contribution manifest itself on Fig. 2. At magnetic fields
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FIG. 1: (Color online) Orbital and spin (labels D, BR, and
D3 denote which spin-orbit interaction is present) relaxation
rates in a single quantum dot, for the piezoelectric (solid)
and deformation potential (dashed) phonons. The confining
length is 32 nm. Anti-crossing of the unperturbed spin and
orbital state occurs at B⊥ = 5.2 T.
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TABLE II: Approximate orbital and spin (due to Dresselhaus
coupling) relaxation rates in a single quantum dot at low and
high magnetic fields in lowest order of the non-degenerate
perturbation theory. In the last column we state the maximal
or minimal magnetic field by requiring that at l0 = 32 nm the
presented approximation does not differ from the numerical
value by more than a factor of 2.

higher than 1 T the piezoelectric contribution dominates.
Up to about 4 T we are still in the regime E ≫ 1 and the
rate grows with increasing magnetic field and increasing
confinement length. Since the energy difference E drops
with increasing magnetic field, for magnetic fields & 6 T
we get into the limit E ≪ 1. The corresponding orbital
relaxation rates in II then follows from Tab. I usingA = 1
and high magnetic field limits, where E ≈ ~

3/emBl40 and
l2B ≈ 2~/eB. This leads to a much stronger drop of the
deformation contribution to the rate with the increase of
both magnetic field and the confinement length, than is
the drop of the piezoelectric contribution.
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FIG. 2: (Color online) Orbital relaxation rate (the sum of the
deformation and piezoelectric contribution) in a single quan-
tum dot ‘as a function of magnetic field and the confinement
length l0 / the confinement (excitation) energy E0. The rate
is given on the logarithmic scale in the units of s−1. The solid
lines represent equal relaxation rates (equirelaxation lines).
The granular structure in the figure is an artifact of the lim-
ited data resolution.

Finally, we explain the influence of the anti-crossing
on the orbital relaxation rate, seen in Fig. 1. The anti-
crossing contributes by an overall factor of |βii|2, see Eq.
(14), which multiplies the orbital relaxation rates listed
in Tab. II. Solving the appropriate secular equation, we
get40

|βii|2 =
1

2
+

E

2
√

E2 + |C|2
, (27)

where E = ~
2/2ml2B − (~e/2m)B⊥ − 2µB⊥ is the en-

ergy difference between the crossing states, and C =

− ~
2

mlBlBR
(1 − B⊥el

2
B/2~) is the strength of the coupling

between these states due to the Bychkov-Rashba term.
Away from anti-crossing βii ≈ 1, while directly at the
anti-crossing the rate is reduced by a factor of 2. The
anti-crossing region for the orbital relaxation is rather
narrow (∼ 0.1 T) and manifests itself as a narrow line of
the suppression of the rate in Fig. 2.

2. Spin relaxation rates

For spin relaxation the relevant energy difference is the
Zeeman splitting, E ≈ 2|µB|. Therefore the low energy
limit, E ≪ 1, applies up to rather high magnetic fields
(∼10 T). Piezoelectric transversal phonons dominate the
rate. The linear spin-orbit terms dominate over the cu-
bic Dresselhaus term, although the difference becomes
smaller for higher magnetic fields. We use an example
of the linear Dresselhaus term for analytical expressions.
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Using Eq. (22) and the limits of low and high magnetic
fields we present the analytical spin relaxation rates in
Tab. II (these results were also derived in Refs. 40 and
8). These formulas approximately follow from Tab. I
using A = |µB⊥|lB/lDδE and E = |µB⊥|, while noting
that δE = E0 for low and δE = |µB⊥| for high magnetic
fields. The trends described by the Dresselhaus contri-
bution can be seen in Fig. 1. The spin relaxation rate
grows much steeper with increasing magnetic field at low
B⊥ (fifth power) than at high B⊥ (first power). Interest-
ingly, at high magnetic fields the rate does not depend
on the confining length.

Away from anti-crossing analogous formulas, up to a
numerical factor, as those listed in Tab. II, hold for the
contribution to the spin relaxation due to the Bychkov-
Rashba term after the substitution lD → lBR. In this
case the contribution to the overlap between the spin
and ground states due to the term βij in Eq. (14) is
negligible. However, comparing the analytical formulas
from Tab. II with the numerical calculation in Fig. 3, we
find discrepancy, except at low magnetic fields. This is
because, as can be seen also in Fig. 1, the rate is actually
dominated by a spin hot spot (anti-crossing). The anti-
crossing occurs for single dots only when the Bychkov-
Rashba term is present, since the Dresselhaus terms do
not couple the unperturbed orbital states.40,42 In this
case we can neglect all terms but that one containing
βij in Eq. (14) and for the spin relaxation rate due to
the anti-crossing one gets Γ(spin, acr) = |βij |2Γ(orbital).
The secular equation gives

|βij |2 =
1

2
− E

2
√

E2 + |C|2
, (28)

where the variables are those defined under Eq. (27).
Thus, the anti-crossing effectively mixes what we usually
call spin and orbital rates. The spin relaxation rate has a
sharp peak at the anti-crossing. With increasing the “dis-
tance” from the anti-crossing the rate drops, mirroring
the drop of the coefficient |βij |2. Only far enough from
the anti-crossing the term βij is negligible in Eq. (14) and
the rate is described by expressions analogous to those
from Tab. II. In Fig. 1 the Bychkov-Rashba contribution
to the spin relaxation rate is dominated by the βij term
unless the magnetic field is smaller that 2 T. Similarly in
Fig. 2, for fields higher than 2 T the total spin relaxation
rate is dominated by the anti-crossing contribution due
to Bychkov-Rashba term. Consequently, the influence of
the anti-crossing is substantial in a much larger region
(several Tesla) than in the case of the orbital relaxation.

In Ref. 40 spin relaxation rates due to the deforma-
tion potential were computed in the lowest order of the
perturbation theory and an analogous figure to our Fig.
1 was presented. Our results for both orbital and spin
relaxation rates are in a quantitative agreement.
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FIG. 3: (Color online) Spin relaxation rate in a single quan-
tum dot as a function of magnetic field and the confinement
length l0 / the confinement energy E0. The rate is given
on the logarithmic scale in the units of s−1. The solid lines
represent equirelaxation lines.

IV. DOUBLE DOTS

In our double dot potential the ground (excited orbital)
state can be approximated as a symmetric (antisymmet-
ric) combination of two Fock-Darwin functions, Ψ0,0,↑,
placed at the two potential minima. In Ref. 42 we have
studied the energy spectrum and classified the symme-
tries of the states of a double dot with a potential given
by Eq. (2). What we call here ground, spin and orbital

state is denoted there as Γ↑
S , Γ↓

S , and Γ↑
A, respectively.

The upper index indicates spin and the lower index in-
dicates the symmetry of a particular state with respect
to spatial inversion. The energy difference between the
ground and excited orbital state, 2δEt, is strongly in-
fluenced by the ratio of the interdot distance and the
effective length,42 D = d/lB,

2δEt =
~

2

ml2B

2D(1 − θ2){1 + D√
πErfc(D) − e−D2}√

π{eD2(1+θ2) − e−D2(1+θ2)} ,

(29)
where a dimensionless parameter θ = B⊥el

2
B/2~. The

tunneling energy δEt gives the frequency of single-
electron coherent oscillations between the left and right
dots. The approximation of Eq. (22) for spin relaxation
is correct also here, since Eqs. (9) and (10) do not cou-
ple any two of the ground, spin, and orbital states due
to a definite symmetry of the Lz operator.42 There is a
coupling through higher excited states with appropriate
symmetry, but, as we learn from numerics, this is negli-
gible.
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FIG. 4: (Color online) Spin relaxation rate in a double quan-
tum dot as a function of in-plane magnetic field for γ = 0◦

and the interdot distance d / tunneling energy δEt, for a con-
finement length 32 nm. The relaxation rate is given on the
logarithmic scale in the units of s−1. The double dot is ori-
ented along [100] (δ = 0◦).

A. In-plane magnetic field

The spin relaxation rate as a function of in-plane mag-
netic field and the interdot distance is plotted in Fig.
4. The rates for small interdot distances are similar to
the single dot case, where the rate grows with increasing
magnetic field; for low magnetic fields more steeply than
for large. The order of magnitude of the rate is given by
Eq. (23), being about 102 s−1 at 1 T and 105 s−1 at 10 T.
At large interdot distances the rate is strongly influenced
by the presence of a anti-crossing (spin hot spot), which
occurs when the Zeeman and twice the tunneling energies
are equal.37 If the tunneling energy is changed from zero
to a value of order of the single dot excitation energy, re-
gardless of the magnetic field strength, one always passes
through a spin hot spot region, where the spin relaxation
is very fast. Fortunately there exist specific orientations
of the double dot system and the magnetic field, where
this anti-crossing does not occur. We call such a config-
uration “easy passage.”37

To understand the angular dependence of the rate pre-
sented in Ref. 37 and find conditions for an easy pas-
sage we transform the Hamiltonian (6) with H1 given by
Eq. (22) into coordinates in which the new x axis lies
along the dot’s axis d. Since there are no orbital effects
in in-plane magnetic fields, in these new coordinates the
unperturbed solutions of the Hamiltonian H0 have a def-
inite symmetry under inversions about x̂ – the ground
and spin states are symmetric, while the orbital state is
antisymmetric. The transformed H1 of Eq. (22), is

H1 = − µB‖σz{x[l−1
BR cos(γ − δ) − l−1

D sin(γ + δ)]

+ y[l−1
BR sin(γ − δ) − l−1

D cos(γ + δ)]}.
(30)

In the single dot case the coefficient A2 in Tab. I is
proportional to the sum of the squared couplings in Eq.
(30) at x and y. However, in the double dot case, x
and y can couple states differently. For large interdot
distances the most important influence on the spin re-
laxation comes from the anti-crossing of the spin and
orbital states, which are coupled by terms with the x-like
symmetry. Thus, the anti-crossing will not occur if

l−1
BR cos(γ − δ) − l−1

D sin(γ + δ) = 0. (31)

The angles γ and δ that satisfy the above equation de-
fine an easy passage. For a double dot oriented along
[100] direction (δ = 0) the easy passage occurs for an
in-plane magnetic field oriented along angle γ given by
tan γ = lD/lBR. Similarly to the single dot case, the
measured angular dependence recovers the ratio of the
spin-orbit couplings. Now also revealing which one is
larger. More important, as can be seen from Eq. (31),
both linear Bychkov-Rashba and Dresselhaus (also cubic)
spin-orbit terms contribute to the anti-crossing; in single
dots it is only the Bychkov-Rashba coupling which gives
relevant spin hot spots. The position of the easy passage
is then given by an interplay of all the spin-orbit terms.
If the double dot is oriented along [110] (δ = π/4), the
condition for the easy passage is γ = 135◦, being inde-
pendent on the spin-orbit couplings. The importance of
this result has been pointed already in Ref. 37, where
the corresponding numerical results are presented.

B. Perpendicular magnetic field

1. Orbital relaxation rate

There are two different regimes for the orbital relax-
ation, depending on the energy difference of the ground
and orbital states, E = 2δEt, which is more sensitive to
the interdot distance than to the confinement length. If
D ≡ d/lB ≪ 1, then E ≈ ~

2/ml2B, decreasing with in-
creasing the magnetic field or the interdot distance. The
limit of high E applies and the rates are comparable to the
single dot case. On the other hand, if D ≫ 1 the energy,
and thus also the rates, drop exponentially with increas-
ing the magnetic field or the interdot distance. Due to
the complex interplay of the magnetic field and interdot
distance, no power law dependence of the rates on mag-
netic field can be identified. However, approximations
in Tab. I give analytical formulas with a fair agreement
with numerics, if the energy difference E ≈ 2δEt which
is given by Eq. (29).

The dependence of the orbital relaxation rate on the
magnetic field and the interdot distance, for a confining
length 32 nm, is shown in Fig. 5. The lower left cor-
ner is the regime of the high E limit. The rate here is
similar to the single dot case. The opposite corner is the
regime of an exponentially small energy difference and
the rate is practically zero. The transition between these
two regimes comes for a smaller interdot distance if the
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FIG. 5: (Color online) Orbital relaxation rate in a double
quantum dot as a function of in-plane magnetic field for γ =
0◦ and the interdot distance d / tunneling energy δEt, for a
confinement length 32 nm. The relaxation rate is given on
the logarithmic scale in the units of s−1. The double dot is
oriented along [100] (δ = 0◦).

magnetic field is higher, since the transition occurs when
d ∼ lB. Again, as in the single dot case, the anti-crossing
does not have a large influence on the orbital rate – in
the figure it can hardly be seen. For interdot distances
much larger than lB the dots are effectively isolated.

2. Spin relaxation rate

Spin relaxation in double dots reveals a surprising com-
plexity as compared to the single dot case. The com-
plexity is due to the strong anisotropy of spin hot spots.
While anisotropy appears already in single dots, caused
by the interference of the Bychkov-Rashba and Dressel-
haus couplings, additional anisotropy appears in spin hot
spots. This anisotropy does not require the presence
of both couplings. Instead, it is caused by the selec-
tion rules for spin-orbit virtual transitions in the double-
dot spectrum. The corresponding physics is described
by the transformed Hamiltonian H1 of Eq. 30. We
have presented the corresponding numerical calculation
in Ref. 37. Here we discuss the individual contribu-
tions of the Bychkov-Rashba and Dresselhaus terms in
the spin relaxation rate and, specifically, in the spin hot
spot anisotropy.

The contribution to the spin relaxation rate from the
Bychkov-Rashba (Dresselhaus) term is shown in the up-
per (lower) part of Fig. 6. The changes of the upper
figure, if the Dresselhaus terms were present, would be
very small (compare with Fig. 2 in Ref. 37). For low
magnetic fields the rate grows with increasing magnetic
field, as we expect from Tab. I. However, similarly to the
in-plane magnetic field case, the spin hot spots (ridges
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FIG. 6: (Color online) Spin relaxation rate as a function of
perpendicular magnetic field for γ = 0◦ and the interdot dis-
tance d / tunneling energy δEt (at zero magnetic field only),
for a confinement length 32 nm. The relaxation rate is given
in logarithmic scale in the units of s−1. The double dot is
oriented along [100] (δ = 0◦). The upper figure shows results
when only the Bychkov-Rashba term is present in the Hamil-
tonian. In the lower figure, only the Dresselhaus terms are
present.

in Fig. 6) dominate the rate for most of the param-
eters’ range. The interdot distance strongly influences
the spin relaxation rate by determining the position of
anti-crossings. In high magnetic fields, the spin state can
anti-cross higher orbital states depending on the sym-
metry of these states. However, the influence of these
anti-crossings on the rate is limited to a narrow region
of magnetic fields, since the dots are effectively isolated
at high fields and the crossing states do not comply with
the selection rules for spin-orbit couplings of single dot
states.

It is interesting to compare the contribution to the spin
relaxation by the Bychkov-Rashba and the Dresselhaus
terms. Let us first look at the single dot regime, which
in Fig. 6 is visible at d = 0. The spin hot spot appears
only for the Bychkov-Rashba coupling, in line with our
earlier observation42. The Dresselhaus coupling becomes
effective only in the coupled-dot system in which the sym-
metry of the lowest orbital states allows the coupling at
the level crossings. The coupling is again absent at two
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FIG. 7: (Color online) Spin relaxation rate as a function of
γ and the tunneling energy for B|| = 1 T, for [110] growing
direction. The dot orientation is given by δ = π/2. The
relaxation rate is given in logarithmic scale in the units of
s−1.

isolated dots (d→ ∞). Another nice feature seen in Fig.
6 is the transformation of the single-dot spin hot spot at
about 5 T to a double-dot spin hot spot at lower fields,
while the single-dot spin hot spot that starts at about 9
T shifts towards 5 T in the double dot and remains there
at all couplings.

Similarly to the in-plane field case, we can understand
the anisotropy of the spin relaxation in perpendicular
magnetic field by transforming the Hamiltonian of Eq.
(22) into a coordinate system with the x-axes being along
d:

H1 =µB⊥{x[σx(l−1
BR − l−1

D sin 2δ) − σyl
−1
D cos 2δ]

+ y[σy(l−1
BR + l−1

D sin 2δ) − σxl
−1
D cos 2δ]}.

(32)

Due to the presence of the orbital effects of the perpen-
dicular magnetic field, the unperturbed states have no
specific symmetry under inversions along x. As a result
only in the limit of low magnetic fields (lB ≈ l0), for
us below 1 T, the term in Eq. (32) containing x dom-
inates over the term containing y; in higher fields both
terms contribute. In this limit the condition for a sup-
pression of the anti-crossing is lD = lBR and δ = 45◦.
This we call a “weak passage”, since the anti-crossing,
while strongly suppressed, is still present. If the condi-
tion for a weak passage is not fulfilled, the spin relaxation
rate, as a function of δ, still has a minimum at δ = 45◦

and a maximum at δ = 135◦. However, the ratio between
the two extremal values is in general of order 1.
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FIG. 8: (Color online) Spin relaxation rate as a function of ξ
and tunneling energy for B = 1 T, for [110] growing direction.
The dot orientation is given by δ = π/2. The relaxation rate
is given in logarithmic scale in the units of s−1.

C. Other growing directions

Thus far we have considered lateral quantum dots de-
fined in a (001) plane of a GaAs heterostructure. A
different growing direction leads to a different form of
the Dresselhaus spin-orbit interactions1 (the form of the
Bychkov-Rashba term remains unchanged) and to dif-
ferent conditions for the easy passage. Our results are
summarized in Tab. III. For the [111] growth direction
the Dresselhaus term has the same form as the Bychkov-
Rashba one. Our results easily translate for this case by
placing formally lD → ∞. There will be no spin relax-
ation anisotropy in single dots, while in double dots spin
hot spots vanish for cos(γ− δ) = 0 at in-plane fields. For
a general magnetic field a weak passage occurs only at
specific spin-orbit parameters, given by 2

√
3lBR + lD = 0

(the couplings can be negative).
A less trivial situation occurs for the [110] grown quan-

tum well. The linear Dresselhaus coupling has the form

HD = − ~

4mlD
σzPx (33)

Unlike the Bychkov-Rashba coupling, which has eigen-
spins always in the plane, the [110] Dresselhaus term has
eigenspins oriented out of the plane.

The calculated spin relaxation rate for the double dot
system oriented along δ = π/2 in an in-plane magnetic
field of B|| = 1 T is shown in Fig. 7. The spin hot spots
exist for all orientations of the field except at multiples
of π. This is confirmed by analytical considerations sum-
marized in Tab. III. The easy passage exists if the dot
is oriented along the (rotated) x axis, while the in-plane
magnetic field is along ŷ. Also, the [110] Hamiltonian
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growing dir. in-plane general

[001] lBR cos(γ + δ) = lD = lBR, δ = π/4

= lD sin(γ − δ)

[111] cos(γ − δ) = 0 2
√

3lBR + lD = 0

[110] γ = 0, δ = π/2 lBR cos δ = ±2lD cot ξ,

sin(δ − γ) = ±1

[cos α sin α 0] δ = π/2, lD = −lBR cos 2α,

lD tan γ = −lBR cos 2α δ = π/4, ξ = 0

TABLE III: Easy passage conditions for several growing di-
rections in an in-plane magnetic field and weak passage condi-
tions for a magnetic field with a nonzero perpendicular com-
ponent. The z-axis points in the growth direction. The angle
between d and the (accordingly rotated) x-axis is δ, the angle
between the in-plane part of the magnetic field and the x-axis
is γ, while ξ is the angle between the magnetic field and the
z-axis.

is not invariant under the in-plane inversion of the coor-
dinates which is why the period in γ for the relaxation
rate is twice as in the case of the [001] growing direction.
However, the part of the Hamiltonian important for anti-
crossing is invariant with respect to inversion along ŷ.
Therefore, the results in Fig. 7 for γ > π are equal to
those at 2π − γ to a very good approximation.

In order to demonstrate the difference between easy
and weak passages, we plot in Fig. 8 the calculated spin
relaxation rate in double dots defined in a (110) plane.
The dots are oriented along ŷ. From Tab. III one gets
the conditions for the weak passage to be γ = 0, and,
for our spin-orbit couplings, ξ = 56◦, where ξ is the an-
gle between the magnetic field and ẑ. This arrangement
corresponds to the “neck” on the spin hot spot in Fig.
8. However, contrary to an easy passage, here the width
of the anti-crossing region is finite and gets larger with
increasing magnetic field (not shown). Since all weak
passages we found depend on spin-orbit couplings, they
(better, the corresponding geometries) are much less use-
ful for robust inhibiting of spin relaxation than easy pas-
sages.

In the above analysis we have not considered the cu-
bic Dresselhaus term, HD3, in deriving the conditions
for easy passages. Being cubic, even after rotating the
double dot (δ 6= 0), it always has qualitatively the same
symmetry properties with respect to inversions about x̂
and ŷ – it is a sum of two terms, one with symmetry of
x and one y. Therefore the presence of HD3 does not
destroy the easy passage. It can only slightly change
the conditions for the easy passage to occur. For our
parameters this change, checked numerically, is only on
the order of 1◦ for the of angles in Tab. III, so the linear
terms should provide a realistic guidance to experimental
demonstrations of the predicted anisotropy.

V. CONCLUSIONS

We have calculated phonon-induced orbital and spin
relaxation rates of single electron states in single and
double quantum dots. The rates were calculated as a
function of in-plane and perpendicular magnetic fields, as
well as a function of the field and (in the case of double
dots) dots’ orientation. Realistic, GaAs defined, electron-
phonon piezoelectric and deformation potential Hamilto-
nians were considered. Similarly, relevant spin-orbit in-
teractions, namely the Bychkov-Rashba and linear and
cubic Dresselhaus couplings, were used to calculate the
spin relaxation rate. We have supported our numeri-
cal findings by analytical models based on perturbation
theory, deriving effective Hamiltonians which display, in
the lowest order, all the important effects seen in nu-
merics. We have proposed using a classifying dimension-
less parameter E which allows to obtain relevant trends
and order-of-magnitude estimates in important limiting
cases.

In the case of single dots, we have carefully analyzed
the theoretically predicted anisotropy of the spin relax-
ation rate in an in-plane magnetic field. The anisotropy
comes from the interplay of the linear Bychkov-Rashba
and Dresselhaus terms (if only one of the terms domi-
nates, the anisotropy is absent). Experimental verifica-
tion of the anisotropy would give a strong evidence of
the spin-orbit mechanism of spin relaxation. Further-
more, such a measurement would enable to estimate the
ratio of the two relevant spin-orbit terms.

For single dots in a perpendicular magnetic field, which
causes cyclotron effects as well as Zeeman splitting, we
have numerically investigated the orbital relaxation rate.
In addition, we have provided a simple analytical scheme
to estimate the rates in the important limits of low and
high magnetic fields, and found the corresponding rate
as a function of the confining length. The orbital relax-
ation rate is found to be of the order of 109 s−1, with
a relatively small dependence on the magnetic field. At
anti-crossings the orbital relaxation rate is reduced by a
factor of two. At low magnetic fields the rate is domi-
nated by the deformation potential electron-phonon in-
teraction, while at high fields it is dominated by piezo-
electric phonons.

On the other hand, the spin relaxation in single dots is
always dominated by piezoelectric transversal phonons.
The contribution of deformation potential phonons is
more than a decade smaller. The rate is on the order of
105 s−1 over a large region of parameters (magnetic field
and excitation energy). However, the rate is strongly en-
hanced in the region of anti-crossing/spin hot spot, where
it becomes comparable to the orbital relaxation rate. We
have also provided analytical estimates of the rate (away
from the spin hot spots) for various phonon contribu-
tions, at the limits of low and high magnetic fields.

The physics is more complex in coupled dots. We
have numerically studied spin relaxation in double dots
in in-plane magnetic fields, in which the rate is strongly
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FIG. 9: (Color online) Spin relaxation rate in a double dot
as a function of the orientation of the in-plane magnetic field
and tunneling energy for B = 5 T, for [001] growing direction.
The dot orientation is given by δ = π/4. A small asymmetric
term is added into the confinement potential (an electric field
of 103 V/m in y direction is applied in on one of the dots). By
this, the easy passage is turned into a weak passage – compare
with Fig. 4 in Ref. 37.

anisotropic in the direction of both the magnetic field
and the dots’ axis. Similarly to the single dot case, the
piezoelectric phonons dominate spin relaxation here. We
have demonstrated that a spin-hot spot exists at useful
magnetic fields (say, 1 T) and interdot couplings (0.1-
0.01 meV). In fact, a spin hot spot is a typical phe-
nomenon in symmetric double dots since it appears when
the tunneling (coupling) energy becomes comparable to
the Zeeman splitting. Fortunately, the spin hot spots are
strongly anisotropic, due to the symmetry of the low-
est orbital electronic states, and they vanish at certain
orientations of the field and the dots’ axis. We have sys-
tematically investigated these “easy passages” using an
analytical model. We have found the criteria for the ab-
sence of spin hot spots for different growth directions
of the underlying quantum well. These criteria should
be seriously considered in fabricating double dot systems
for spin-based quantum information processing which re-
quires low spin relaxation.

For double dots in a perpendicular magnetic field, the

orbital relaxation rate is most influenced by the energy
difference of the corresponding coupled states. The en-
ergy has a range over eight orders of magnitude due to
the cyclotron effects in the interdot coupling. As in the
single dot case, both deformation potential and piezoelec-
tric phonons can dominate the orbital relaxation. The
spin relaxation in double dots in a perpendicular field
has similar qualitative features as in the single dot case,
with an additional anisotropy given by the orientation
of the double dot with respect to the crystallographic
axes. However, unlike in in-plane fields, only weak easy
passages (in which spin hot spots form a neck on the pa-
rameter map, rather than disappear altogether) exist in
a perpendicular magnetic field. We have also observed a
nice shift of spin hot spots to the lower field neighbors
as the tunneling between the dots decreases. While the
perpendicular fields provide a nice opportunity to study
fundamental physics of double dot systems, they are less
useful in quantum information processing due to the om-
nipresence of spin hot spots and weak passages.

Our final note concerns the symmetry of the double dot
systems investigated in this paper. Do our conclusions
hold if the symmetry is broken? The answer is yes, if the
double-dot system still possesses either x- or y-like sym-
metry. Suppose, for example, that a weak electric field
is applied along x̂ or ŷ, or one of the dots is somewhat
smaller than the other. The spin hot spot anisotropy still
leads to easy passages in spin relaxation in in-plane mag-
netic fields. On the other hand, if the symmetry breaking
is xy-like (an electric field pointing along a diagonal, for
example), the easy passage is destroyed since the selec-
tion rules for the lowest orbital states will allow coupling
of the states by the term containing y in H1 of Eq. 30
(recall that it was the vanishing of the term containing x
that lead to the appearance of easy passages). This situ-
ation is demonstrated in Fig. 9. A double dot system in
an in-plane field of 5 T is oriented along [110] (the growth
direction is [001]). If the double dot is symmetric, an easy
passage exists for γ = 135◦ (the corresponding figure is
given in Ref. 37). However, if one of the dots is subject to
a y-like electric field, so that the overall symmetry of the
perturbation is xy-like, the easy passage turns to a weak
passage—at all directions of the in-plane magnetic field
there exists an interdot coupling in which the spin relax-
ation rate is greatly enhanced. This is another important
message for spin-based quantum information processing
in quantum dots.
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