126 research outputs found

    GRADE equity guidelines 4: guidance on how to assess and address health equity within the evidence to decision process

    Get PDF
    Objective: The aim of this paper is to provide detailed guidance on how to incorporate health equity within the GRADE (Grading Recommendations Assessment and Development Evidence) evidence to decision process. Study design and setting: We developed this guidance based on the GRADE evidence to decision (EtD) framework, iteratively reviewing and modifying draft documents, in person discussion of project group members and input from other GRADE members. Results: Considering the impact on health equity may be required, both in general guidelines, and guidelines that focus on disadvantaged populations. We suggest two approaches to incorporate equity considerations: 1) assessing the potential impact of interventions on equity and; 2) incorporating equity considerations when judging or weighing each of the evidence to decision criteria. We provide guidance and include illustrative examples. Conclusion: Guideline panels should consider the impact of recommendations on health equity with attention to remote and underserviced settings and disadvantaged populations. Guideline panels may wish to incorporate equity judgments across the evidence to decision framework

    GRADE equity guidelines 3: considering health equity in GRADE guideline development: rating the certainty of synthesized evidence

    Get PDF
    Objectives: The aim of this paper is to describe a conceptual framework for how to consider health equity in the Grading Recommendations Assessment and Development Evidence (GRADE) guideline development process. Study Design and Setting: Consensus-based guidance developed by the GRADE working group members and other methodologists. Results: We developed consensus-based guidance to help address health equity when rating the certainty of synthesized evidence (i.e., quality of evidence). When health inequity is determined to be a concern by stakeholders, we propose five methods for explicitly assessing health equity: (1) include health equity as an outcome; (2) consider patient-important outcomes relevant to health equity; (3) assess differences in the relative effect size of the treatment; (4) assess differences in baseline risk and the differing impacts on absolute effects; and (5) assess indirectness of evidence to disadvantaged populations and/or settings. Conclusion: The most important priority for research on health inequity and guidelines is to identify and document examples where health equity has been considered explicitly in guidelines. Although there is a weak scientific evidence base for assessing health equity, this should not discourage the explicit consideration of how guidelines and recommendations affect the most vulnerable members of society

    Radio observational constraints on Galactic 3D-emission models

    Full text link
    (Abridged) We constrain simulated all-sky maps in total intensity, linear polarization, and rotation measure (RM) by observations. We test a number of large-scale magnetic field configurations and take the properties of the warm interstellar medium into account. From a comparison of simulated and observed maps we are able to constrain the regular large-scale Galactic magnetic field in the disk and the halo of the Galaxy. The local regular field is 2 microG and the average random field is about 3 microG. The known local excess of synchrotron emission originating either from enhanced CR electrons or random magnetic fields is able to explain the observed high-latitude synchrotron emission. The thermal electron model (NE2001) in conjunction with a proper filling factor accounts for the observed optically thin thermal emission and low frequency absorption by optically thick emission. A coupling factor between thermal electrons and the random magnetic field component is proposed, which in addition to the small filling factor of thermal electrons increases small-scale RM fluctuations and thus accounts for the observed depolarization at 1.4 GHz. We conclude that an axisymmetric magnetic disk field configuration with reversals inside the solar circle fits available observations best. Out of the plane a strong toroidal magnetic field with different signs above and below the plane is needed to account for the observed high-latitude RMs. Our preferred 3D-model fits the observations better than other models over a wide frequency range.Comment: 20 pages, 19 figures, accepted for publication in A&A, for full resolution version see ftp://ftp.mpifr-bonn.mpg.de/outgoing/p098wre/sun-etal.pd

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF

    Multi-messenger searches via IceCube’s high-energy neutrinos and gravitational-wave detections of LIGO/Virgo

    Get PDF
    We summarize initial results for high-energy neutrino counterpart searches coinciding with gravitational-wave events in LIGO/Virgo\u27s GWTC-2 catalog using IceCube\u27s neutrino triggers. We did not find any statistically significant high-energy neutrino counterpart and derived upper limits on the time-integrated neutrino emission on Earth as well as the isotropic equivalent energy emitted in high-energy neutrinos for each event

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    The Acoustic Module for the IceCube Upgrade

    Get PDF
    corecore