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1. Cosmic-Ray Physics at the South Pole

Experimental cosmic-ray (CR) research aims to determine the energy spectrum, the elemental
composition, and the arrival direction distribution of incoming cosmic particles. Such measure-
ments are essential for understanding the sources, acceleration, and propagation of these energetic
particles of cosmic origin. At energies above 1014 eV, the characteristics of these particles are
mostly determined indirectly from measured properties of the extensive air showers (EAS) induced
by primary cosmic rays in Earth’s atmosphere.

Figure 1: Scheme of air-shower measurements
at the IceCube Neutrino Observatory [1]

IceCube’s surface array, IceTop [2], has proven
over the past decade to be a very valuable detec-
tor component not only for the calibration of Ice-
Cube, but also in combination with the unique cube-
kilometer-sized in-ice muon detector as a cosmic
ray observatory (Fig. 1). It is providing veto and
calibration functionality for the in-ice neutrino mea-
surements [3], as well as measurements of the pri-
mary cosmic-ray spectrum and mass-composition
from 1 PeV to about 1 EeV [4]. The latter is –
beside knowledge gain in the PeV to EeV primary
energy range of cosmic rays – essential to reduce
systematic uncertainties on the atmospheric back-
grounds of astrophysical neutrinos in the ice [5].
Any progress in the research field depends on the
validity of hadronic interaction models required for
the interpretation of EAS measurements. Hence,
it is important to reduce the uncertainties by im-
proving hadronic interaction models and enhancing
air-shower arrays to perform hybrid measurements
of the various EAS components. Moreover, IceTop
contributes to IceCube’s multi-messenger mission in
particular regarding Galactic sources: searches for
photons [6], and measurements of the anisotropy of
Galactic cosmic rays [7].

IceCube and other experiments have con-
tributed to today’s knowledge of Galactic cosmic
rays (GCR) which can be summarised as follows.

The all-particle spectrum has a steep power-law like behaviour with features known as ‘knee’,
’second knee’ and ‘ankle’ at 2-5 · 1015 eV, 1-3 · 1017 eV and 2-8 · 1018 eV, respectively. Whereas
at the knee and the second knee the spectrum steepens, the ankle is characterised by a flattening
of the spectrum. Cosmic rays below the knee are of galactic origin and cosmic rays above the
ankle are most probably of extra-galactic origin. Somewhere in the energy range from 1016 eV
to a few 1018 eV the transition of cosmic rays from galactic to extra-galactic origin is expected.
There are, however, still major issues regarding the highest energy GCR: (i) The most powerful
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accelerators of cosmic rays in our Milky Way have not yet been revealed. (ii) The maximum
energies of various possible acceleration mechanisms and sources are uncertain. (iii) The Galactic
extra-galactic transition and features in the CR energy spectrum are not well understood. These
questions can be addressed through improved measurements of the energy dependent composition
of GCR in conjunction with gamma-ray and neutrino observations. It means that we must bring
multi-messenger astrophysics to maturity not only at the ultra-high energy range, but also for the
Galactic scenario at lower energies.

In this contribution we summarise the recent achievements and future plans for air-shower
measurements by the IceCube collaboration, which are described in more detail in further papers
for this conference.

2. Recent Results
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Figure 2: Measured muon density at 600 m (circles) and
600 m (squares) lateral distance. Error bars indicate the
statistical, brackets the systematic uncertainty. Shown for
comparison are the corresponding simulated densities for
proton and iron (red and blue lines) [8].

Important for understanding GCR is
first and foremost a precise knowledge of
the all-particle energy spectrum and the
elemental composition of cosmic rays in
the entire transition range from 100 TeV to
10 EeV of primary energy. IceCube has
delivered important milestones, first with
the composition paper [4] from three years
of data taking and now recently with the
reconstruction of the lower energy spec-
trum in the 100 TeV - 1 PeV range [9].
With a new trigger that selects events in
closely spaced detectors in the center of
the array, the IceTop energy threshold has
been lowered by almost an order of magni-
tude below its previous threshold of 2 PeV.
New machine-learning methods were de-
veloped to deal with events with very few
detectors hit. In Figure 5 the results are
compared with previous measurements by
IceTop and other experiments. However, the results also show that there is still a long way to go
to understand high-energy GCR. In particular, both the statistical and systematic uncertainties need
to be reduced, and the analyses need to be extended to a coherent determination of the elemental
composition and possible small and large scale anisotropies in a wide energy range. In addition,
the understanding of shower development needs to be further improved. For this, IceCube offers
the best prerequisites: a total of 9 years of data are now available, new (machine learning) methods
have been developed and are being applied, and with new detector components the phase space as
well as the accessible energy ranges will be extended to higher and lower energies in the future.
The following chapters give an overview of the current activities related to the surface component
of IceCube.
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3. Current Analyses

A unique feature of IceCube is the measurement of the (muonic) shower nucleus with the
in-ice instrumentation, where shower muons above 0.5 TeV reach the in-ice detector and can be
detected. The 3-dimensional structure of the in-ice Cherenkov light measured in the sensors is
analyzed and used as a mass-sensitive parameter, in particular in correlation with the density of all
charged particles of the shower at the surface measured with IceTop. The results contain a large
uncertainty first due to the shower-to-shower fluctuations, and secondly due to shortcomings of
the Monte Carlo simulations in the description of the EAS evolution, especially for the muons. It
has been shown that a dedicated measurement of the muon densities at different energy thresholds
can significantly improve the situation [10]. Therefore, analyses of the IceTop data focus on a
possible identification of the shower muons. For that, at IceTop, a determination is made of the
fraction of the measured detector signal produced by secondary muons. Here, nature, or better the
shower development, helps in the way that the lateral distribution of the muons is flatter than that
of the electrons, so that with larger distance to the shower core the relative signal fraction of muons
becomes dominant. However, the total number of particles decreases quickly in the lateral direction,
so that fewer particles are measured per shower. It was also shown that the ratio of GeV muons to
TeV muons is an important parameter for the cross-check of the hadronic interaction models [11].
For these reasons, recent analyses at IceTop have focused on determining the GeV muon density in
detected air showers. A first analysis (fig. 2) determines the mean muon density at large distances
and correlates it with the energy of the primary particles [8]. The measured densities are not
coherently consistent with predicted muon densities obtained from the hadronic interaction models.
For a determination of the elemental composition, however, it is advantageous if the muon number
or a muon density can be determined on the basis of individual events [12]. The paper suggests
how promising this can be for determining the composition.
The selection of muons in air showers improves when examiningmore horizontally incident primary
particles, since here the electromagnetic components are already attenuated by the larger path length
through the atmosphere. Therefore, the analysis of air showers up to 60 degrees zenith angle aims
to check and verify the elemental composition of cosmic rays at IceCube with an independent set
of events and thus to gain better determination of systematic uncertainties [13].
The extracted muon density is also used in an analysis which focuses on the comparison, test
and validity studies of hadronic interaction models [1]. IceCube has the capability to measure
simultaneously the electromagnetic, GeV muon and TeV muon components of air showers. In that
work, tests of various hadronic interaction models are presented by comparing data to proton and
iron simulations for three different composition sensitive variables. If the models give a realistic
description of experimental data, the composition interpretation of all variables should be consistent.
However, IceTop indicates inconsistencies between different components, notably between the slope
of the lateral distribution of the charged particles and the low-energy muons in all models.
In another analysis air-shower signals seen in IceTop are used to determine a real-time veto for
astronomical neutrino alerts sent out in order to trigger multi-messenger campaigns. From June 19,
2019 to December 31, 2020, IceCube sent 45 public alerts to the multi-messenger community. In
this list, 6 alerts were for down-going (\ < 82◦) events including the four events with reconstructed
energies above 1 PeV. IceTop data is used to tag cosmic ray induced event when there is a significant
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Figure 3: (Left) Layout of a surface station for the enhancement of IceTop, which is also the baseline design
for the Gen2 surface array. (Right) Corresponding prototype detectors at IceTop; both the scintillators and
radio antennas are deployed on stands that can be lifted to avoid snow management.

number of correlated IceTop pulses recorded with the in-ice muons within a time residual window
of 0 to 1 `s. A count of at least 2 stations or 6 tanks of IceTop correlated in-time with the in-ice
event marks IceTop activity. So far, using IceTop information, one alert event was cautioned as
being of cosmic-ray origin and two high-energy events were retracted.
Finally, improved analysis methods are applied to make more efficient use of the various air shower
observables of the hybrid detector system IceCube. These are based in particular on machine
learning and show promising preliminary results [14].

4. Future Instrumentation

4.1 Surface Array Enhancement

IceTop measures cosmic rays in the transition region from galactic to extra-galactic sources.
However, the non-uniform snow accumulation on the installed ice-Cherenkov tanks leads to a non-
uniform attenuation of the electromagnetic component which results in an increased uncertainty
on the reconstruction of the air-shower parameters. Therefore, an upgrade of IceTop with an array
of scintillator panels is under construction [15]. The enhancement foresees the deployment of 32
stations of 8 detectors and 3 radio antennas, read out by a central station DAQ, each within the
present IceTop area [16] (fig. 3). Taking advantage of the infrastructure that the scintillator array
will provide, installation of radio antennas is also underway [17]. These only moderate additional
effortswillmake the surface array to amulti-component detector. Furthermore, the collaboration has
examined the possibility of addingCherenkov telescopes (IceAct) to the surface instrumentation [18]
that would measure the electromagnetic component of particularly lower energy air-showers as
another complementary building block towards a hybrid cosmic-ray observatory.

The proposed detector types are optimized to serve the following general goals:

• Cross-calibration: The coincident detection of air showers and muons deep in the ice will
allow for an improved calibration of the in-ice detector and IceTop.

5



P
o
S
(
I
C
R
C
2
0
2
1
)
3
3
6

Cosmic-ray studies at IceCube

• Improved capabilities for studying cosmic rays: The detection of comic rays through several
independent detection channels will enhance the capabilities of In-ice IceCube and it’s surface
component IceTop to measure the mass composition of cosmic rays as well as allowing for
composition dependent anisotropy studies.

• Lowering the threshold for air-shower observations: The higher density of detectors will
allow accurate reconstruction of air showers for energies below 1 PeV, i.e. the full energy
range of the knee will be covered.

• Better understanding of hadronic interaction models: The measurements of air showers
through several detection channels will improve the understanding of hadronic interactions.

• Improved sensitivity to primary gamma rays: For the gamma-ray detection from possible
UHE sources a larger energy range and a larger exposure will be available.

• Improvement of surface veto capabilities for atmospheric neutrinos: The energy threshold
for vetoing the background to astrophysical neutrinos in IceCube will be lowered.

Figure 4: Surface array of IceCube-Gen2 (darker
colors) and IceTop enhancement (lighter colors)
consisting of hybrid stations with eight scintilla-
tion detectors and three radio antennas. In addi-
tion IceTop tanks are shown.

Two R&D scintillator stations with different de-
signs were deployed in January 2018 and performed
well. One of these stations was upgraded with two
radio antennas in January 2019 [16]. Using these
experiences, a new prototype station combining and
improving the previous iterationswas designed. This
prototype station was deployed at the South Pole in
January 2020, replacing the old stations. With it,
the first coincident measurements of cosmic-ray air-
showers using scintillation detectors, radio antennas
and IceTop were obtained [19]. Furthermore two
prototype air-Cherenkov telescope are in operation
at the South pole and have reported hybrid events
detected with IceCube and IceTop [18]. At this con-
ference we present the hardware design and the per-
formance of the prototype station as well as the plans
for the full deployment.

4.2 IceCube-Gen2 Surface Array

The conceptual design of the surface instrumen-
tation for IceCube-Gen2 [20] will be similar to the
enhancement planned for IceTop with correspond-
ingly larger spacing. The baseline design assumes a
station on top of each new in-ice string of IceCube-

Gen2 (fig. 4). With a spacing of ∼240m, such a surface array would provide hybrid measurements
of the primary spectrum and mass composition from PeV to several EeV. A few additional stations
between the current IceTop and the new surface array will guarantee a smooth coverage, enabling
a consistent analysis of both surface arrays. Moreover, a small overlap with the Gen2 in-ice radio
array will allow for the calibration of the cosmic-ray signals detected by the in-ice antennas. This
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Figure 5: The energy spectrum of cosmic rays with indications (the yellow bands show the respective energy
range) of the rich physics program of the IceCube and IceCube-Gen2 surface instrumentation [21].

overlap will ensure that all detector components of IceCube and Gen2 will share the same absolute
energy scale by cross-calibration against the same air-shower array on the surface [21].

With the larger area and the larger accessible angular range available, the acceptance for
coincident measured surface and in-ice events increases by a factor of more than 30 compared
to IceCube. This leads to the unique possibility of an array with large acceptance for events in
which the air shower at the surface and the bundle of ∼ TeV muons in the deep array are detected
in coincidence. The design will furthermore allow for selecting individual unaccompanied high-
energy muons which can be used to calibrate the in-ice reconstruction of muons. In addition, the
TeVmuons will provide information on the mass composition and on hadronic interactions in the air
showers complementary to low-energy muons at the surface. This is important to better understand
the flux of atmospheric leptons creating background for the astrophysical neutrinomeasurements. In
addition, the drastically increased aperture for coincident events with the in-ice detectors increases
the potential to directly discover nearby sources by PeV photons accordingly. A surface detector
also opens up the possibility of vetoing the background of cosmic-ray muon and even atmospheric
neutrinos. With hundreds of coincident events per year above one EeV, such a detector would allow
for an unprecedented measurement of the evolution of the primary composition in the region where
a transition from Galactic to extra-galactic cosmic rays is predicted [22].

5. Summary

IceCube with its surface array IceTop covers the complete range of high-energy GCRs from
below 1 PeV to beyond 1 EeV. The simultaneous measurement of low-energy particles at the surface
and high-energy muons in the ice offers unique opportunities for the study of hadronic interactions,
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and, in addition, also allows an improved search for PeV photons. A planned enhancement by a
scintillator-radio hybrid array will significantly increase the accuracy and sky coverage of IceTop.
Air-Cherenkov detectors can further enhance its accuracy around a few PeV and below. Finally, a
planned expansion of IceCube to IceCube-Gen2 with a corresponding surface instrumentation will
increase the exposure by an order of magnitude and will open a new window in studying the highest
energy Galactic cosmic rays.
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