43 research outputs found

    Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit

    Get PDF
    Due to their large heat and moisture storage capabilities, the tropics are fundamental in modulating both regional and global climate. Furthermore, their thermal response during past extreme warming periods, such as super interglacials, is not fully resolved. In this regard, we present high-resolution (analytical) foraminiferal geochemical (ÎŽ18O and Mg/Ca) records for the last 1800 kyr from the shallow (487 m) Inner Sea drift deposits of the Maldives archipelago in the equatorial Indian Ocean. Considering the diagenetic susceptibility of these proxies, in carbonate-rich environments, we assess the integrity of a suite of commonly used planktonic and benthic foraminifera geochemical datasets (Globigerinoides ruber (white), Globigerinita glutinata (with bulla), Pulleniatina obliquiloculata (with cortex) and Cibicides mabahethi) and their use for future paleoceanographic reconstructions. Using a combination of spot Secondary Ion Mass Spectrometer, Electron Probe Micro-Analyzer and Scanning Electron Microscope image data, it is evident that authigenic overgrowths are present on both the external and internal test (shell) surfaces, yet the degree down-core as well as the associated bias is shown to be variable across the investigated species and proxies. Given the elevated authigenic overgrowth Mg/Ca (∌12–22 mmol/mol) and ÎŽ18O values (closer to the benthic isotopic compositions) the whole-test planktonic G. ruber (w) geochemical records are notably impacted beyond ∌627.4 ka (24.7 mcd). Yet, considering the setting (i.e. bottom water location) for overgrowth formation, the benthic foraminifera ÎŽ18O record is markedly less impacted with only minor diagenetic bias beyond ∌790.0 ka (28.7 mcd). Even though only the top of the G. ruber (w) and C. mabahethi records (whole-test data) would be suitable for paleo-reconstructions of absolute values (i.e. sea surface temperature, salinity, seawater ÎŽ18O), the long-term cycles, while dampened, appear to be preserved. Furthermore, planktonic species with thicker-tests (i.e. P. obliquiloculata (w/c)) might be better suited, in comparison to thinner-test counter-parts (i.e. G. glutinata (w/b), G. ruber (w)), for traditional whole- test geochemical studies in shallow, carbonate-rich environments. A thicker test equates to a smaller overall bias from the authigenic overgrowth. Overall, if the diagenetic impact is constrained, as done in this study, these types of diagenetically altered geochemical records can still significantly contribute to studies relating to past tropical seawater temperatures, latitudinal scale ocean current shifts and South Asian Monsoon dynamics

    Controls on planktonic foraminifera apparent calcification depths for the northern equatorial Indian Ocean

    Get PDF
    Within the world’s oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions. As such, this study constrains modern depth habitats for the northern equatorial Indian Ocean, for 14 planktonic foraminiferal species (G. ruber, G. elongatus, G. pyramidalis, G. rubescens, T. sacculifer, G. siphonifera, G. glutinata, N. dutertrei, G. bulloides, G. ungulata, P. obliquiloculata, G. menardii, G. hexagonus, G. scitula) using stable isotopic signatures (ή18O and ή13C) and Mg/Ca ratios. We evaluate two aspects of inferred depth habitats: (1) the significance of the apparent calcification depth (ACD) calculation method/equations and (2) regional species-specific ACD controls. Through a comparison with five global, (sub)tropical studies we found the choice of applied equation and ή18Osw significant and an important consideration when comparing with the published literature. The ACDs of the surface mixed layer and thermocline species show a tight clustering between 73–109 m water depth coinciding with the deep chlorophyll maximum (DCM). Furthermore, the ACDs for the sub-thermocline species are positioned relative to secondary peaks in the local primary production. We surmise that food source plays a key role in the relative living depths for the majority of the investigated planktonic foraminifera within this oligotrophic environment of the Maldives and elsewhere in the tropical oceans

    A two million year record of low-latitude aridity linked to continental weathering from the Maldives

    Get PDF
    Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earth’s orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/K cycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100 kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25 Ma in tandem with the global ice volume benthic ή 18 O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130 kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100 kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition. The Correction to this article has been published in Progress in Earth and Planetary Science 2019 6:21 - https://doi.org/10.1186/s40645-019-0259-

    A two million year record of low-latitude aridity linked to continental weathering from the Maldives

    Get PDF
    Tem uma correção em http://hdl.handle.net/10400.1/12390Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earth’s orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/K cycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100 kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25 Ma in tandem with the global ice volume benthic ή18O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130 kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100 kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition.SFRH/BPD/96960/2013; PTDC/MAR-PRO/3396/2014info:eu-repo/semantics/publishedVersio

    Individual foraminiferal analysis (IFA) geochemical data generated from IODP Site 359-U1467

    No full text
    Individual foraminiferal analysis (IFA) geochemical data was generated for the Recent (mudline) and climatic maxima of Marine Isotope Stages (MISs) 9e, 11c and 12 aged sediments from IODP Site 359-U1467. All samples were measured on a Thermo Electron Delta+ Advantage mass spectrometer integrated with a Kiel carbonate III automated extraction line. Species measured: Globigerinoides ruber (white) and Trilobatus sacculifer (with sac-like final chamber) from the 355-400 ÎŒm size fraction
    corecore